• Title/Summary/Keyword: Canavalia ensiformis

Search Result 13, Processing Time 0.135 seconds

Characterization of the Lectin Purified from Canavalia ensiformis Shoots

  • Roh, Kwang-Soo;Park, Na-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • Lectin is a cell-agglutinating and carbohydrate-binding protein present in many plants. The lectin of Canavalia ensiformis shoot with specific affinity for D-glucose was purified by affinity chromatography using Sephadex G-100, and some of its biochemical characterizations were studied. Lectin was purified 8.87-fold and exhibited final specific activity of 225.74 units/mg protein with a $2.3\%$ yield. SDS-PAGE analysis demonstrated that the purified shoot lectin exists as a tetramer of 102 kD, composed of two subunits with molecular weight of 29 and 22 kD. The purified lectin was observed to agglutinate rabbit blood cell. The optimal temperature for the activity of this lectin was $40^{\circ}C$, and this lectin was relatively stable to heat with the highest activity at $50{\~}60^{\circ}C$. The maximal activity was observed at pH 7.2.

Effect of sword bean (Canavalia ensiformis) fermentation filtrate on the antioxidant, anti-inflammatory, and antimicrobial activities (작두콩(Canavalia ensiformis) 발효액이 항산화, 항염증 및 항균 활성에 미치는 영향)

  • Hye-Lim Jang
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1072-1081
    • /
    • 2023
  • In the present study, various experiments were performed to evaluate the biological activities, such as the antioxidant, anti-inflammation, and antimicrobial activities of sword bean (Canavalia ensiformis) fermentation filtrate by Lactobacillus plantarum (L. plantarum) and Lactobacillus brevis (L. brevis). Total polyphenol (TPC) and flavonoid contents (TFC) of sword bean were significantly decreased after fermentation regardless of Lactobacillus sp. (p<0.05). The DPPH radical scavenging activity of sword beans also decreased after fermentation. However, nitric oxide (NO) radical scavenging activity conspicuous increased after fermentation (p<0.001) in a treated concentration-dependent manner, and the effect for L. brevis was higher than for L. plantarum. In addition, the sword bean fermentation filtrate showed a strong inhibitory effect against Pseudomonas aeruginosa, Staphylococcus sp., and Escherichia coli. Cell cytotoxicity was not exhibited in all experimental groups (data not shown). These findings suggest that the sword bean fermentation filtrate may be used effectively in various industries due to its high anti-inflammatory and antimicrobial activities.

Influence of Cadmium on Rubisco Activation in Canavalia ensiformis L. Leaves

  • Lee, Kyong-Ro;Roh, Kwang-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • We studied the effect of cadmium on chlorophylls and rubisco activation in Canavalia ensiformis L. leaves. Chlorophyll levels were reduced by 5.0 ${\mu}$M Cd. Rubisco activity at 5.0 ${\mu}$M Cd was significantly smaller than that at no treatment. Rubisco Content showed patterns of change similar to rubisco activity. These data suggest that rubisco activity was associated with an amount of rubisco protein, and that the activation and induction of rubisco is inhibited by Cd. The degree of intensity of 50 and 14.5 kD polypeptides identified as the large and small subunit of rubisco by SDS-PAGE analysis at 5.0 ${\mu}$M Cd was significantly lower than that at control, indicating Cd had a e f-fect on both subunits. Under the assumption that effects of Cd on rubisco may be r elated to rubisco activase, in addition to, its activity and content we re determined . The rubisco activase activity at 5.0 ${\mu}$M Cd was more decreased than the control. A similar change pattern was also observed in content of rubisco activase. Remarkable differences in the intensitiy of both the 45 kD and 41 kD band were found between at control and Cd-treatment. These results suggest that the change in the levels of rubisco activase leads to a subsequent alter action of rubisco levels.

Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract (요소분해효소 기반 식물추출액을 이용한 광산폐기물 내 중금속 오염 저감)

  • Roh, Seung-Bum;Park, Min-Jeong;Chon, Chul-Min;Kim, Jae-Gon;Song, Hocheol;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • Acid mine drainage occurrence is a serious environmental problem by mining industry, it usually contains high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of the greatest concern. An indigenous plant extract was used to produce calcium carbonate from Canavalia ensiformis as effective biomaterial, and its ability to form the calcium carbonate under stable conditions was compared to that of purified urease. X-ray diffraction and scanning electron microscopy were employed to elucidate the mechanism of calcium carbonate formation from the crude plant extracts. The results revealed that urease in the plant extracts catalyzed the hydrolysis of urea in liquid state cultures and decreased heavy metal amounts in the contaminated soil. The heavy metal amounts were decreased in the leachate from the treated mine soil; 31.7% of As, 65.8% of Mn, 50.6% of Zn, 51.6% of Pb, 45.1% of Cr, and 49.7% of Cu, respectively. The procedure described herein is a simple and beneficial method of calcium carbonate biomineralization without cultivation of microorganisms or further purification of crude extracts. This study suggests that crude plant extracts of Canavalia ensiformis have the potential to be used in place of purified forms of the enzyme during remediation of heavy metal contaminated soil.

Possibility of Jack Bean (Canavalia ensiformis) Cropping System in Southern Regions of Korea

  • Jaehee Jeong;Yeoung-Hoon Lee;Eom-Ji Hwang;Tae-Joung Ha;Youjin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.147-147
    • /
    • 2022
  • Various types of cropping systems have been developed, such as a highly profitable cropping system, and there is a need to develop for each region. Jack bean [Canavalia ensiformis (L.)] is widely consumed for tea in which young seedpods are dried, roasted, and boiled in water. Jack bean is rich in histidine and urease that improve allergic rhinitis and they are effective in alleviating inflammation. Thus, young dried and roasted seedpods are very profitable. However, only 'young pods (soft, pre-swelling)' should be used for tea processing according to the 'Food Code' (Ministry of Food and Drug Safety). Therefore, the pods to be harvested were set based on a length of more than 20 cm and a thickness of less than 2 cm. In the southern region of Korea, onion and garlic are grown as primary crops in winter. Therefore, the possibility of a cropping system linked with Jack bean in summer was studied. Onion and garlic were sown and transplanted on October 25, 2021. Garlic was harvested on May 23,2022, followed by onion on May 31,2022. After that, the jack bean was transplanted on May 31, June 7, June 17, and June 27 to determine the appropriate period for the transplanting. The young seedpods were harvested 100-110 days after the transplant. Compared to the yield of young seedpods, there was no significant difference according to the transplantation period. Given that young seedpods are harvested before planting onion and garlic, 'Onion - Jack bean' and 'Garlic - Jack bean' cropping systems will be advantageous for income improvement.

  • PDF

Pattern of 'Concanavalin A' Synthesis during Development of Jack Bean (Canavalia ensiformia) Pods

  • Sehee Kim;Yeoung-Hoon Lee;Eom-Ji Hwang;Tae-Joung ha;Youjin Park;Jaehee Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.323-323
    • /
    • 2022
  • Jack bean [Canavalia ensiformis (L.)], belonging to the Leguminosae family has been frequently used in edible and medicinal plants in Asian countries. Jack beans are high in protein which is approximately 30%. Concanavalin A (Con A) is a major protein of Jack bean and belongs to the family of legume lectins. It has inhibitory effect on hepatocellular carcinoma by inducing autophagy. However, Con A negatively affects nutrient utilization by other mechanisms. It binds to the glycoproteins and glycolipids of the digestive tract mucosa, inhibits the activity of the enzymes of the brush border of the enterocytes. In order to use Jack bean young seedpods, they are restricted to 'young pods (soft, pre-swelling)' according to the 'Food Code' (Ministry of Food and Drug Safety). Therefore, in this study, we investigated the quantitative change of Con A across developmental stages of Jack bean pods. Biological samples consisted of Jack bean pods and seeds in 7 stages of development. The expression pattern of Con A mRNA was monitored by quantitative reverse transcription PCR (RT-qPCR). Expression of Con A proteins was analyzed by western blotting. The expression of Con A mRNA and protein in the seeds tended to increase gradually as the seeds expanded. However, in pods, they were much less than in seeds. As the expression of Con A mRNA and protein increases as the pods thicken, it is predicted that Con A synthesis increases when the thickness growth of the pod begins after the length growth of the pod is completed. Since the expression of Con A in the pods and seeds in very low when the pods are about 2 cm, therefore 2 cm pods seem appropriate when using 'young pods'. It is also necessary to study other proteins in Jack bean, such as Urease and Canavalin. These studies will serve as the basis for processing Jack bean.

  • PDF

Heterometal-Coordinated Monomeric Concanavalin A at pH 7.5 from Canavalia ensiformis

  • Chung, Nam-Jin;Park, Yeo Reum;Lee, Dong-Heon;Oh, Sun-Young;Park, Jung Hee;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2241-2244
    • /
    • 2017
  • The structure of concanavalin A (ConA) has been studied intensively owing to its specific interactions with carbohydrates and its heterometal ($Ca^{2+}$ and $Mn^{2+}$) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of $1.6{\AA}$, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.