Browse > Article
http://dx.doi.org/10.4014/jmb.1709.09057

Heterometal-Coordinated Monomeric Concanavalin A at pH 7.5 from Canavalia ensiformis  

Chung, Nam-Jin (Department of Crop Science and Biotechnology, Chonbuk National University)
Park, Yeo Reum (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
Lee, Dong-Heon (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
Oh, Sun-Young (Department of Neurology, Chonbuk National University Medical School)
Park, Jung Hee (Division of Biotechnology, Chonbuk National University)
Lee, Seung Jae (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.12, 2017 , pp. 2241-2244 More about this Journal
Abstract
The structure of concanavalin A (ConA) has been studied intensively owing to its specific interactions with carbohydrates and its heterometal ($Ca^{2+}$ and $Mn^{2+}$) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of $1.6{\AA}$, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.
Keywords
Concanavalin A; lectins; heterometal coordination; microbial detection; sugar binding region;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gerlits OO, Coates L, Woods RJ, Kovalevsky A. 2017. Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography. Biochemistry 56: 4747-4750.   DOI
2 Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ. 2008. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J. Am. Chem. Soc. 130: 16933-16942.   DOI
3 Bouckaert J, Loris R, Wyns L. 2000. Zinc/calcium- and cadmium/cadmium-substituted concanavalin A: interplay of metal binding, pH and molecular packing. Acta Crystallogr. D Biol. Crystallogr. 56: 1569-1576.   DOI
4 Kantardjieff KA, Hochtl P, Segelke BW, Tao FM, Rupp B. 2002. Concanavalin A in a dimeric crystal form: revisiting structural accuracy and molecular flexibility. Acta Crystallogr. D Biol. Crystallogr. 58: 735-743.   DOI
5 Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, et al. 2007. Structural basis for the recognition of blood group trisaccharides by norovirus. J. Virol. 81: 5949-5957.   DOI
6 Auer HE, Schilz T. 1984. pH-dependent changes in properties of concanavalin A in the acid pH range. Int. J. Pept. Protein Res. 24: 462-471.
7 Christie DJ, Munske GR, Appel DM, Magnuson JA. 1980. Conformational changes following Mn(II) binding to demetalized concanavalin A1. Biochem. Biophys. Res. Commun. 95: 1043-1048.   DOI
8 Pandolfino ER, Appel DM, Christie DJ, Magnuson JA. 1980. Location of $Mn^{2+}$ in concanavalin A containing only a $Mn^{2+}$ ion. Biochem. Biophys. Res. Commun. 96: 1248-1252.   DOI
9 Magnuson JA, Alter GM, Appel DM, Christie DJ, Munske GR, Pandolfino ER. 1983. Metal ion binding to concanavalin A. J. Biosci. 5: 9-17.   DOI
10 Bezerra GA, Oliveira TM, Moreno FB, de Souza EP, da Rocha BA, Benevides RG, et al. 2007. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J. Struct. Biol. 160: 168-176.   DOI
11 Bronzoni RV, Fatima M, Montassier S, Pereira GT, Gama NM, Sakai V, et al. 2005. Detection of infectious bronchitis virus and specific anti-viral antibodies using a concanavalin A-sandwich-ELISA. Viral Immunol. 18: 569-578.   DOI
12 Moothoo DN, Naismith JH. 1998. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of ${\beta}-GlcNAc-(1-->2)-{\alpha}-Man-(1-->3)-[{\beta}-GlcNAc-(1-->2)-{\alpha}-Man-(1-->6)]$-Man upon binding. Glycobiology 8: 173-181.   DOI
13 Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. 2005. Unfolding studies on soybean agglutinin and concanavalin A tetramers: a comparative account. Biophys. J. 88: 1300-1310.   DOI
14 Kaushik S, Mohanty D, Surolia A. 2009. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophys. J. 96: 21-34.   DOI
15 Kim D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, et al. 2017. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 128: 33-43.   DOI
16 Balzarini J. 2007. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat. Rev. Microbiol. 5: 583-597.   DOI
17 Garrison AR, Giomarelli BG, Lear-Rooney CM, Saucedo CJ, Yellayi S, Krumpe LR, et al. 2014. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Res. 112: 1-7.   DOI
18 O'Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PK, McMahon JB, et al. 2010. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol. 84: 2511-2521.   DOI
19 Okino CH, Alessi AC, Montassier Mde F, Rosa AJ, Wang X, Montassier HJ. 2013. Humoral and cell-mediated immune responses to different doses of attenuated vaccine against avian infectious bronchitis virus. Viral Immunol. 26: 259-267.   DOI
20 Bouckaert J, Dewallef Y, Poortmans F, Wyns L, Loris R. 2000. The structural features of concanavalin A governing non-proline peptide isomerization. J. Biol. Chem. 275: 19778-19787.   DOI
21 Doyle R, Keller K. 1984. Lectins in diagnostic microbiology. Eur. J. Clin. Microbiol. 3: 4-9.   DOI