• Title/Summary/Keyword: Campus Network

Search Result 295, Processing Time 0.024 seconds

FANET:-Communication Architecture and Routing Protocols A Review

  • Moazzam Ali;Adil Idress;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.181-190
    • /
    • 2024
  • FANET (Flying ad-hoc network) is a self-adjusting wireless network that enables easy to deploy flying nodes, inexpensive, flexible such as UAV in the absence of fixed network infrastructure they communicate amoung themselves. Past few decades FANET is only the emerging networks with it's huge range of next-generation applications.FANET is a sub-set of MANET's(Mobile Ad-hoc Network) and UAV networks are known as FANET.Routing enables the flying nodes to establish routes to radio access infrastructure specifically FANET and among themselves coordinate and collaborate.This paper presents a review on existing proposed communication architecture and routing protocols for FANETS.In addition open issues and challenges are summarized in tabular form with proposed solution.Our goal is to provide a general idea to the researchers about different topics to be addressed in future.

Clustering Algorithms for Reducing Energy Consumption - A Review

  • Kinza Mubasher;Rahat Mansha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.109-118
    • /
    • 2023
  • Energy awareness is an essential design flaw in wireless sensor network. Clustering is the most highly regarded energy-efficient technique that offers various benefits such as energy efficiency and network lifetime. Clusters create hierarchical WSNs that introduce the efficient use of limited sensor node resources and thus enhance the life of the network. The goal of this paper is to provide an analysis of the various energy efficient clustering algorithms. Analysis is based on the energy efficiency and network lifetime. This review paper provides an analysis of different energy-efficient clustering algorithms for WSNs.

Design for u-Yuhan using Mobile Based on RFID/USN (RFID/USN 기반에서의 모바일을 이용한 u-유한 설계)

  • Ahn, Byeong-Tae;Kang, Ki-Jun
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.431-439
    • /
    • 2007
  • In the ubiquitous which is rapidly developing with ultra speed these days, constructing the u-Campus which is using the sensor-network as its base is keep developing. Also, any information related equipments like PC and mobile, computing is possible whenever and wherever you want and due to the development of the wireless network, the service environment is continually developing. In this article, I'd like to suggest the u-Campus which is very suitable to the user's environment which had used application of mobile. In u-Campus, various techniques are adopted and applied along with development of info-communication related technidques. Especially, the new type of campus which is constructed by adopting the ubiquitous computing net-work technique to the campus of university is the u-Campus. In this article, by suggesting u-Yuhan designing methods, more effective and advanced school activities of students to make possible.

  • PDF

Analysis of MANET's Routing Protocols, Security Attacks and Detection Techniques- A Review

  • Amina Yaqoob;Alma Shamas;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.23-32
    • /
    • 2024
  • Mobile Ad hoc Network is a network of multiple wireless nodes which communicate and exchange information together without any fixed and centralized infrastructure. The core objective for the development of MANET is to provide movability, portability and extensibility. Due to infrastructure less network topology of the network changes frequently this causes many challenges for designing routing algorithms. Many routing protocols for MANET have been suggested for last few years and research is still going on. In this paper we review three main routing protocols namely Proactive, Reactive and Hybrid, performance comparison of Proactive such as DSDV, Reactive as AODV, DSR, TORA and Hybrid as ZRP in different network scenarios including dynamic network size, changing number of nodes, changing movability of nodes, in high movability and denser network and low movability and low traffic. This paper analyzes these scenarios on the performance evaluation metrics e.g. Throughput, Packet Delivery Ratio (PDR), Normalized Routing Load(NRL) and End To-End delay(ETE).This paper also reviews various network layer security attacks challenge by routing protocols, detection mechanism proposes to detect these attacks and compare performance of these attacks on evaluation metrics such as Routing Overhead, Transmission Delay and packet drop rates.

A Study of Context-Awareness Monitoring System for the Disabled Students in u-Campus (u-Campus에서 장애학생을 위한 상황인지 모니터링 시스템 연구)

  • Oh, Young-Hwan
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.519-527
    • /
    • 2010
  • The Ubiquitous Sensor Network, a new computing paradigm, is a core technology of ubiquitous computing for context-awareness monitoring system using sensor networks. Recently, ubiquitous campus has been developed to build ubiquitous computing environments in many universities. In this paper, I propose the development of context-awareness monitoring system, to acquire the context information through various sensors and provide the campus information and safety services for students with disabilities using mobile devices. Ubiquitous sensor system based on u-campus technology for students with disabilities can especially be used to provide customized information.

Automated Methodology for Campus Network Design and Performance Analysis (캠퍼스 네트워크의 구성 및 성능분석 자동화 방법론)

  • 지승도
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.1-16
    • /
    • 1998
  • This paper presents an automated methodology for campus network design and performance analysis using the rule-based SES and DEVS modeling & simulation techniques. Proposed methodology for structural design and performance analysis can be utilized not only in the early stage of network design for selecting configurable candidate from all possible design alternatives, but also in simulation verification for generating performance data. Our approach supercedes conventional methodologies in that, first, it can support the configuration automation by utilizing the knowledge of design expert ; second, it can provide the simulation-based performance evaluation ; third, it is established on the basis of the well-formalized framework so that it can support a hierarchical and modular system design. Several simulation tests performed on a campus network example will illustrate our technique.

  • PDF

Energy efficient watchman based flooding algorithm for IoT-enabled underwater wireless sensor and actor networks

  • Draz, Umar;Ali, Tariq;Zafar, Nazir Ahmad;Alwadie, Abdullah Saeed;Irfan, Muhammad;Yasin, Sana;Ali, Amjad;Khattak, Muazzam A. Khan
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.414-426
    • /
    • 2021
  • In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.

A Dynamic Placement Mechanism of Service Function Chaining Based on Software-defined Networking

  • Liu, Yicen;Lu, Yu;Chen, Xingkai;Li, Xi;Qiao, Wenxin;Chen, Liyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4640-4661
    • /
    • 2018
  • To cope with the explosive growth of Internet services, Service Function Chaining (SFC) based on Software-defined Networking (SDN) is an emerging and promising technology that has been suggested to meet this challenge. Determining the placement of Virtual Network Functions (VNFs) and routing paths that optimize the network utilization and resource consumption is a challenging problem, particularly without violating service level agreements (SLAs). This problem is called the optimal SFC placement problem and an Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is also provided based on an improved two-step mapping algorithm. The obtained experimental results show that the proposed algorithm can automatically place VNFs at the optimal locations and find the optimal routing paths for each online request. This algorithm can increase the average request acceptance rate by about 17.6% and provide more than 20-fold reduction of the computational complexity compared to the Greedy algorithm. The feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation.

Adopting NAC to guarantee reliability of u-Campus network (u-Campus내 네트워크 신뢰성 확보를 위한 NAC 도입 및 구축 로드맵)

  • Lee, Won-Jin;Kim, Kee-Won;Bu, Ki-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1385-1388
    • /
    • 2009
  • 오늘날 IT 환경의 변화는 내부 네트워크에서 새로운 보안위협이 발생하면서, 네트워크에 접근하는 접속단말기의 보안성을 강제화 할 수 있는 보안 인프라로서, NAC(Network Access Control)의 필요성이 증대고 있다. 최근 u-Campus 네트워크에서 다양한 보안위협에 대한 문제점을 해결하기 위해 NAC 도입 및 구축의 필요성이 높아지고 있지만, 기존 보안 솔루션과의 복잡한 연계관계 및 운영체제에 대한 유연성 결여 등 여러 문제가 도출되고 있다. 따라서 본 논문에서는 u-Campus 내 네트워크 신뢰성 확보를 위해 NAC 도입 및 구축 시 필요한 로드맵을 제시함으로서, 각 대학에서는 효율적인 NAC 솔루션 선택에 필요한 지침이 되며, 다양한 보안 위협을 사전에 방어하여 네트워크의 신뢰성 증진과 무결성을 유지할 수 있는 방안을 제시한다.

Enhancement in Isolation among Collinearly Placed Microstrip Patch Antenna Arrays

  • Irfan Ali, Tunio;Hernan, Dellamaggiora;Umair, Saeed;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 2023
  • Strong surface waves among collinearly arranged patch antenna arrays pose unwanted inter element coupling particularly when high permittivity dielectric materials are used. In order to avert those waves, a novel Defected Ground Structure (DGS) is carved out systematically between two E-plane patch antenna elements. The introduced low profile μ shaped structure consequently improves impedance bandwidth and reflection coefficient by suppressing surface waves considerably. Parametric simulation results are analyzed and discussed.