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Abstract 
 

To cope with the explosive growth of Internet services, Service Function Chaining (SFC) 
based on Software-defined Networking (SDN) is an emerging and promising technology that 
has been suggested to meet this challenge. Determining the placement of Virtual Network 
Functions (VNFs) and routing paths that optimize the network utilization and resource 
consumption is a challenging problem, particularly without violating service level 
agreements (SLAs). This problem is called the optimal SFC placement problem and an 
Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is 
also provided based on an improved two-step mapping algorithm. The obtained experimental 
results show that the proposed algorithm can automatically place VNFs at the optimal 
locations and find the optimal routing paths for each online request. This algorithm can 
increase the average request acceptance rate by about 17.6% and provide more than 20-fold 
reduction of the computational complexity compared to the Greedy algorithm. The 
feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation. 
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1. Introduction 

In recent years, the demand for Internet services has constantly expanded due to the 
explosive propagation of mobile devices and the emergence of novel networking paradigms 
such as the Internet of Things (IoTs) [1]. Today’s networks ubiquitously deploy vertically 
integrated proprietary middleboxes (e.g., Firewall, Intrusion Detection System (IDS), and 
Network Address Translation (NAT)). However, the static service model causes two main 
problems: Firstly, the traditional middlebox comes at the cost of high Capital Expenditure 
(CAPEX) and Operating Expenditure (OPEX). Secondly, it is impossible to add new 
functionality to an existing middlebox, which makes it hard for network operators to place 
new services. Consequently, the new dynamic service model research has become a hot topic 
[2-3]. 

Both the promising Software-defined Networking (SDN) [4] network architecture and 
Network Function Virtualization (NFV) [5] technology can solve these outlined problems. 
SDN decouples the control plane from the data plane. The controller is the central 
administrator of the network, it obtains the global network and can be used to 
programmatically configure forwarding flow tables in the switches, thus enabling Virtualized 
Network Function (VNF) orchestration. NFV proposes to move the packet processing from 
hardware middleboxes toward software, thus providing possibilities for network 
optimization and cost reduction. The dynamic Service Function Chaining (SFC) is an enabler 
of the SDN/NFV networking paradigm. It provides a flexible and economical alternative to 
today’s static network environment for application service providers (ASPs) and Internet 
service providers (ISPs). 

At present, dynamic SFC technology is still in its infancy. However, the optimal 
placement is one of the most challenging problems in the NFV-based network [6-8]. 
Significant current research focuses on the single aspect of resource utilization. For example, 
Mijumbi et al. used the Tabu Search algorithm that performs both mapping and scheduling 
of VNFs by searching for better solutions in its neighborhood [9]. Deval et al. proposed the 
Affinity-based heuristic algorithm that considers the cache capacity of a node with priority. 
However, this approach causes a longer VNF processing waiting time [10]. Xiong et al. 
proposed a service function placement mechanism, which is biased towards favoring the use 
of nodes that are loaded the least [11]. Zhang et al. proposed a scalable framework (called 
StEERING) for dynamic traffic routing through the proper VNF sequence. The Greedy 
algorithm which is biased towards favoring using paths that are least loaded was proposed. 
However, this approach results in unbalanced network loads [12]. Bari et al. used a Viterbi 
algorithm to place the service function chaining, which considers the total cost of the entire 
service path, without considering resource utilization [13]. The same algorithm has also been 
used by the authors Liu et al. However, this approach has been abandoned due to 
computational complexity [14]. 

The above studies are either solely based on node resource utilization or on making only 
some preliminary explorations regarding link resource utilization. Few studies have designed 
a specific placement strategy that considers global network utilization, which is the focus in 
this paper. Here, we denote the optimal SFC placement problem, focusing on how to place 
the VNFs at the optimal locations and how to find optimal routing paths, with the objective 
of minimizing resource consumptions while simultaneously balancing the network loads. 
Specifically, the contributions of this paper are: 
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1. The service function chaining placement problem is theoretically formulated by the 
integer linear programing model. 

2. A novel greedy heuristic solution is proposed based on the improved two-step mapping 
algorithm, and the performance is evaluated via Matlab. 

3. The effectivity of our placement mechanism is validated on an SDN framework with 
OpenDaylight [15], NetFPGA-10G [16] and sFlow [17]. 

The remainder of this paper is organized as follows: we start by introducing the 
SDN/NFV-based architecture and by formally explaining the network model of our system 
(Section 2). Then, the integer linear programming (ILP) formulation is presented (Section 3). 
Next, a novel greedy heuristic algorithm is proposed that obtains the near-optimal solution 
(Section 4). Our proposed solution is validated via Matlab and a NetFPGA-10G prototype 
implementation is given (Section 5). Finally, we conclude this work by providing promising 
future directions (Section 6). 

2. Network Model  

2.1 SDN/NFV-based architecture 
Fig. 1 provides an overview of our architecture. The components of the architecture can be 
classified into three types including the orchestration plane, the control plane and the data 
plane. The orchestration plane is the development environment of VNFs, and its main role is 
to manage and orchestrate the VNFs to control the global network, according to different 
network demands and application scenarios. The control plane can programmatically 
configure forwarding flow tables in the switches to enable VNF orchestration. The SDN 
controller plays a key role in mapping VNFs and virtual links onto the substrate network 
based on a specific placement strategy, and consequently form the service path. The data 
plane mainly includes routers/switches and NFV platforms, which forwards the traffic flow 
and provides service processing.  
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Fig. 1. Overview of the service function chaining placement using SDN 
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2.2 Placement Model 
The placement process of service chaining is formulated as a two-level model, which 
includes the “SFC Policy—Logical Function Chaining” process and the “Logical Function 
Chaining—Service Path” process. Fig. 2 provides an overview of this two-level model. The 
“SFC Policy—Logical Function Chaining”  process is a dynamic choreography of VNFs 
implemented by applications through northbound interfaces. The “Logical Function 
Chaining — Service Path” process allocates the physical resources reasonably through 
southbound interfaces. 
Definition 1. SFC Policy. The SFC policy is represented by a 4-tuple 1 2{ , , ( , ,... ), }s t mP v v c c c t= , 
where sv and tv  denote the ingress and egress switches, respectively. 1 2{ , ,... }mC c c c=
represents the ordered VNF sequence the traffic flow must pass (e.g., 
NAT Firewall IDSS S ). τ denotes the expected propagation delay according to the SLAs 
and m  is the number of service functions. 
Definition 2. Logical Function Chaining. Logical function chaining is formed by the VNF 
function modules based on the SFC policy. Here, we assume that all deployable nodes and 
their contextual relationships have been defined as a directed graph ),( vvv LNG = , where 

1 1 1{ ..., , , ,... |1 }v v v v v v
i i i mN n n n n n i m− += ≤ ≤  represents the set of traffic nodes (switches and VNFs) 

and }1|),...,{( mjinnL v
j

v
i

v ≤<≤=  denotes the links between them. 
Definition 3. Service Path. We place the VNFs at the optimal locations and obtain the 
optimal routing path based on the placement strategy, then forming a service path. Here, we 
assume that the substrate network is defined as an undirected graph ),( sss LNG = , with the 
node set 1 1 1{ ,..., , , ... |1 }s s s s s s

j j j kN n n n n n j n− += ≤ ≤  representing substrate nodes and the edge set 
{( , ),... |1 }s s s

i jL n n i j n= ≤ < ≤  representing substrate links. 
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Fig. 2. The “SFC Policy—Logical Function Chaining—Service Path” process 
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The procedure of our placement is as follows: Firstly, the orchestration plane can 

orchestrate the VNFs based on the SFC policy, which satisfies the requirements of the tenant. 
Secondly, the SDN controller runs the service placement decision module, which solves the 
optimization problem of minimizing the resource consumption. Finally, the results of the 
decision module are output of the configuration to map a logical function chaining to the 
substrate network via the uniform APIs. If the mapping is successful, the corresponding 
instantiation resource is allocated, and then the service path is formed; otherwise, the 
mapping fails. As shown in Fig. 2, the shaded nodes represent the substrate nodes where the 
VNFs are placed, while the unshaded substrate nodes only forward data flow. 

3. Integer Linear Programming (ILP) Formulation 
In this section, we introduce the problem of minimizing the total resource consumption for 
each SFC mapping in the NFV-based networks as an ILP optimization problem. The goal of 
the presented optimization model is to minimize the total physical resource consumption to 
the ISPs, thus satisfying other constraints such as the site capacity constraint, the link 
capacity constraint, and the placement constraint (due to SLAs, which will be explained 
later). We formulated the optimization model to deploy workflows on the VNFs and assign 
client requests to these workflows to meet the service demands. The resource consumption 
can be divided into two categories: VNF resources consumption and virtual link resources 
consumption. Consequently, an optimization model with applicable constraints is formulated 
and the SFC placement problem can be solved via an Integer Linear Programming (ILP) 
methodology. The list of variables used in the ILP is provided in Table 1. 
 

Table 1. Variables used in the ILP 
Variable Explanation 

s
k
v
i

n
n

x  If the VNF node v v
in N∈  is located in the substrate node s s

kn N∈  
,
,

s s
k l
v v
i j

n n
n n

y  If the virtual link ( , )v v v
i jn n L∈  is located in the substrate link ( , )s s s

k ln n L∈  

)( v
inc  Amount of requested CPU resources for the VNF node v v

in N∈  

)( s
knr  Amount of remaining CPU resources for the substrate node s s

kn N∈  
( , )v v

i jc n n  Amount of requested bandwidth resources for the virtual link ( , )v v v
i jn n L∈  

),( s
l

s
k nnr  Amount of remaining bandwidth resources for the substrate link ( , )s s s

k ln n L∈  
( )s

kD n  Maximum VNF processing delay on the substrate node s s
kn N∈  

( , )s s
k lD n n  Maximum communication delay along the substrate link ( , )s s s

k ln n L∈  

Consider the problem of optimal SFC mapping in a NFV-enabled network. 
s
k
v
i

n
n

x  is 

introduced to indicate which of the VNFs v v
in N∈  can be provisioned on a substrate node

s s
kn N∈  . That is: 

1 a VNF is provisioned on ,
=

0 otherwise.
s
k
v
i

v v s s
n i k
n

n N n N
x

 ∈ ∈



 

The binary variable ,
,

s s
k l
v v
i j

n n
n n

y  is introduced to formulate the routing of the service chaining. 

Therefore:  
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           ,
,

1 a virtual link ( , ) is provisioned on ( , ) ,
=

0 otherwise.
s s
k l
v v
i j

v v v s s s
n n i j k l
n n

n n L n n L
y

 ∈ ∈



 

 
The following lists the constraints of the optimization model: 
1) Site capacity constraint: the total load of the CPU resource across all SFC requests 

and all VNFs at each substrate node s s
kn N∈  should be less than or equal to its CPU 

capacity. We express this constraint as follows: 
( ) ( ), ,

s
k
v
i

n v s v v s s
i k i kn

x c n r n n N n N× ≤ ∀ ∈ ∈                                          (1) 

2) Link capacity constraint: the total load of the bandwidth resource across all SFC 
requests and all logical links at each substrate link ( , )s s s

k ln n L∈  should be less than or 
equal to its bandwidth capacity. We represent this constraint as follows: 

,
,

( , ) ( , ), ( , ) ,( , )
s s
k l
v v
i j

n n v v s s s s s v v v
i j k l k l i jn n

y c n n r n n n n L n n L× ≤ ∀ ∈ ∈               (2) 

3) Delay constraint: for wide area service chaining, the end to end delay of each SFC 
request should be less than or equal to PD . This delay includes both the VNF 
processing delay at the datacenter sites and the communication delay along the links. 
We present the delay constraints for the service path as follows: 

,
,

( , ) ( , )

( , ) ( ) , , , ( , ) ,( , )
s s s
k l k
v v v
i j is s s v v v v v s s

k l i j i k

n n ns s s P v v s s s s s v v v
k l k i k k l i jn n n

n n L n n L n N n N

y D n n x D n D n N n N n n L n n L
∈ ∈ ∈ ∈

× + × ≤ ∀ ∈ ∈ ∈ ∈∑ ∑ ∑ ∑  (3) 

4) Connectivity constraint: we present the connectivity constraint that ensures both the 
in-flow and out-flow of each switch in the substrate network are equal except at the 
ingress and egress switches. This constraint is represented as follows: 

, ,
, ,

( , ) ( , )

( ) , , , ( , ) ,( , )
s s s s s s
k l k l k l
v v v v v v
i j j i i iv v s s s v

i j k l

n n n n n n v v s s s s s v v v
i k k l i jn n n n n n

n n L n n L

y y x x n N n N n n L n n L
∈ ∈

− = − ∀ ∈ ∈ ∈ ∈∑ ∑     (4) 

5) Placement constraint: to ensure that every traffic node is provisioned onto exactly 
one VNF; we also need to ensure that every link in a traffic request is provisioned on 
one or more substrate links within the networks. We present the placement constraint 
as follows: 

1, ,
s
k
v
iv v s s

i k

n v v s s
i kn

n N n N

x n N n N
∈ ∈

= ∀ ∈ ∈∑ ∑                                       (5) 

, ,
, ,

( , ) ( , )

( ) 0, ( , ) ,( , )
s s s s
k l k l
v v v v
i j i jv v s s s v

i j k l

n n n n s s s v v v
k l i jn n n n

n n L n n L

y y n n L n n L
∈ ∈

+ ≥ ∀ ∈ ∈∑ ∑          (6) 

6) Variable constraint: to ensure that the values of 
s
k
v
i

n
n

x  and ,
,

s s
k l
v v
i j

n n
n n

y  equal 0 or 1, we must 

have: 
{0,1}, ,

s
k
v
i

n v v s s
i kn

x n N n N∈ ∀ ∈ ∈                                              (7) 
,
,

{0,1}, ( , ) ,( , )
s s
k l
v v
i j

n n s s s v v v
k l i jn n

y n n L n n L∈ ∀ ∈ ∈                                        (8) 

Now, given a set of network services, each of which requiring a strictly ordered chaining 
of network functions as corresponding traffic traverses, the fundamental objective is to 
efficiently place VNFs to the datacenter sites and map virtual links to substrate links that can 
satisfy all constraints mentioned above while minimizing resource consumption across the 
network. This objective can be mathematically described as: 
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,
,

( , )( ) ( , )
s s s
k k l
v v v
i i jv v v v v

i i j

n n n
s s sn n n
k k ln N n n L

Minimize x y
r n r n n

α β
δ δ∈ ∈

+
+ +∑ ∑                            (9)  

                                                                                                     
Here, α  and β  are weighting factors that are used to adjust the relative importance of the 

resource consumption components. δ  represents as a minimum value, which ensures the 
nonzero property of the denominator. To improve the utilization of the physical resources, 

( )s
kr n  and ( , )s s

k lr n n  are taken as denominators so that the placement strategy can be more 
inclined to nodes or links, which contain the largest amount of the remaining resources. 

The SFC placement problem is NP-Hard since we can reduce this problem to the Multi-
Commodity, Multi-Plant, and Capacitated Facility Location Problem [18], which is more 
commonly known as the Trans-Shipment Problem [19] by imposing a constraint on the 
appropriate number of VNFs that can be deployed in the network. Both of these problems 
are known to be NP-hard. Therefore, the SFC placement problem is also NP-Hard. The 
method to solve this problem can be divided into two categories:  an exact algorithm and a 
heuristic algorithm [20]. The exact algorithm has limited applicability due to its 
computational complexity. However, the heuristic algorithm can be used to obtain the near-
optimal solution of the placement problem within a polynomial time. Therefore, we propose 
a heuristic algorithm to solve this problem in the next section. 

4. Greedy Heuristic Solution 
In this section, we present a greedy heuristic to solve the SFC placement problem. Rost et al. 
[21], Schmid et al. [22] and Moens et al. [23] have reported that the heuristic algorithm 
achieves good performance in dealing with integer linear programming. In this study, we 
extend the baseline two-step mapping algorithm [24] with several improvements, such as 
greedy strategy, sorting mechanism, and k-Dijkstra algorithm. Then, the Greedy node 
mapping with k-Shortest Path link mapping algorithm (called G-kSP) is proposed to obtain 
the optimal SFC placement for the ILP model. 

4.1 Introduction of the G-kSP algorithm 
Existing schemes either focus exclusively on the resource utilization of nodes or on the 
resource utilization of links. To overcome this narrow focus, an improved two-step mapping 
algorithm is presented that efficiently assigns both VNFs and virtual links onto the substrate 
network for each online SFC request, with the objective of minimizing the resource 
consumption to the ISPs. In our G-kSP algorithm, the requested resource, the remaining 
resource and the QoS are considered. The requested resources can be decomposed into the 
requested CPU resources for the VNFs and the requested bandwidth resources for the virtual 
links. The remaining physical resource includes the remaining CPU resources for the 
substrate nodes and the remaining bandwidth resources for the substrate links. 

This algorithm keeps track of the available node/link resources of the substrate network. 
Note that for the substrate node s s

kn N∈ , we do not use )( s
knr  alone as the metric of the 

available resource, because we not only want to ensure sufficient available CPU capacity, 
but also consider bandwidth capacity to prepare the subsequent virtual link mapping stage. 
Therefore, we define the amount of available resources for the substrate node s

kn  via: 
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∑
∈

=
)(

)()()(
s
k

s
k nEe

s
k

s
k

s
k ernrnR                                               (10) 

 
where )( s

knE  represents the set of all adjacent substrate links of s
kn , )( s

knr  represents the 

remaining CPU resource of s
kn , and )( s

ker  represents the unoccupied bandwidth resource 
for the substrate link s

ke . 
Thus, for a VNF node v v

in N∈ , the requested resource ( )v
iC n  is computed as follows: 

 

( )

( ) ( ) ( )
v v
i i

v v v
i i i

e E n

C n c n c e
∈

= ∑                                              (11) 

where ( )v
iE n  represents the set of all adjacent virtual links for v

in , ( )v
ic n  represents the 

CPU requirements for the VNF node v
in , and ( )v

ic e  represents the bandwidth requirements 
for the virtual link v

ie . 
The greedy heuristic algorithm mainly runs in two steps. Firstly, the VNF nodes are 

sorted in a descending manner based on their resource requirements, and a near-optimal 
VNF placement is obtained by running the greedy strategy, which prioritizes the substrate 
node with maximum available resources. Then, the k-shortest path algorithm is used to 
produce an approximation approach to minimize the bandwidth consumption via virtual link 
mapping. For the former approach, the sorting mechanism can obtain the optimal service 
path without requiring global searching, and the proposed greedy strategy can optimize 
operational network utilization. For the latter approach, the k-shortest path algorithm can 
find optimal mapping from a virtual link between VNFs to specific substrate links. 

 

4.2 Formulation of the G-kSP algorithm 

The main steps of the G-kSP algorithm can be described as follows: 

Input: Substrate network topology sG , SFC requests P  
Output: VNF mapping set { }( )s s s

N i iM n n N∀ ∈  , virtual link mapping set { }( , ) ( , )s s s s s
L i j i jM n n n n L∀ ∈  

Step 1. Acquisition of the VNF queue Q . Q  contains the mapping order of VNFs. Sort the 
VNFs in descending order based on their requested resources (defined in Equation (11)), 
then store this VNFs in queue Q . 
Step 2. Acquisition of the mappable set M . M  contains the substrate nodes that satisfy the 
constraints mentioned above. Find the mappable node set M  of the substrate node that 
satisfies both the restrictions and available resources. If this is found, store substrate nodes in 
set M ; otherwise, open new VMs for VNF mapping. 
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Step 3. Placing the VNF at optimal locations. Take out the first VNF in queue Q , and map 
the VNF to the substrate node with “maximum available resources” (as defined in Equation 
(12)). If the VNF v

in  is successfully mapped to the substrate node s
kn  ,  1=

s
k
v
i

n
nx ,  store it in 

set NM ; otherwise, trace back to the suboptimal solution in the mappable node set M . 
Update queue Q . 
 

{ }ˆ ˆ arg max ( ),s s s s s s
k k k k kn n n R n n N= = ∀ ∈                                        (12) 

 
Step 4. Acquisition of the VNF mapping set NM  . NM  contains the placement information 
of the VNFs. Determine whether there is the remaining VNF in queue Q . If feasible, go to 
Step 3 and execute the next VNF in queue Q  ; otherwise, obtain the set NM  . 
Step 5. Acquisition of the k-shortest path set R . R contains k paths with minimum transport 
bandwidth between ingress and egress. Find the k-shortest paths from ingress node sv  to 
egress node tv  by using the K-Dijkstra algorithm, while preserving the set NM  and the 
ordering of VNFs Pϕ . Denote the k-shortest paths as 1 2{ , ,..., }kR r r r= . 
Step 6. Finding the optimal routing path LM . LM  contains the placement information of the 
virtual links. Sort R  in descending order based on the occupied bandwidth resource ( , )v v

i jc n n , 

and take the path with the minimum occupied bandwidth resource. If the virtual link ( , )v v
i jn n  is 

successfully mapped to the substrate link ( , )s s
k ln n  , and 1,

, =
s
l

s
k

v
j

v
i

nn
nny  , store it in set LM ;  

otherwise, trace back to the suboptimal solution in the set R . 
Step 7. Monitor the service time and allocate physical resources. Determine whether the 
service path should preserve QoS (defined in Equation (3)). If feasible, the corresponding 
instantiation resource is assigned; otherwise, reclaim allocated resources. Then, update the 
network state information. 

Based on the provided description, we input all algorithm parameters and call the G-kSP 
algorithm to obtain the SFC placement scheme. The process flow is shown in Fig. 3. Upon 
the controller, the decision module runs the G-kSP algorithm, and achieves the results 

( )s
N iM n  and ( , )s s

L i jM n n , which represent the locations of the VNFs and virtual links, 
respectively. 
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Fig. 3. Process flow of G-kSP algorithm 

4.3 Algorithm Complexity 
The G-kSP placement algorithm proposed here aims to work around the complexity of the 
formulated ILP. Here, we assume that a network supports a constant number of network 
services. Let the number of the substrate nodes and the maximum length of a service 
chaining be m  and n , respectively. For each network service, the main processes of the 
proposed G-kSP are: i) placing the VNF at the optimal locations and ii) finding the optimal 
routing path. The first process is based on both the sorted mechanism and greedy strategy. It 
is well known that this process has a certain complexity, which follows the order of 

)log( nnO . In the second part of the proposed algorithm, the K-Dijkstra algorithm has a 
complexity of )log( MnnKO ++ . In conclusion, the complexity is )log( MnnKO ++  for the 
process of one SFC request. 

5. Performance Evaluation 
Our performance evaluation focuses on the following aspects: (i) analyze the performance of 
the proposed G-kSP algorithm on the 6-nodes network topology adopted by SNDlib library. 
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Compare the performance of our solution to that of the Greedy, Tabu Search, GFP, and GLL 
based optimal solutions, which have already been studied in the literature for the SFC 
placement problem; (ii) perform trace driven simulations on an SDN framework with 
OpenDaylight, NetFPGA-10G, and sFlow, verify the effectivity of the proposed G-kSP 
algorithm, and compare the performance of our algorithm to that of Shortest-path, round-
robin, and Random, which has already been developed in the OpenDaylight SFC project.  

5.1 Algorithm evaluation 

5.1.1 Experimental workloads  
To evaluate the performance of the proposed algorithm, the experimental environment is set 
up on a PC with a 3.6 GHz two core Intel® CoreTM i7 and 8GB RAM. The GT-ITM tool [25] 
is used to generate different network topologies and the G-kSP algorithm is implemented 
with MATLAB. For the topology dataset, we use the datacenter network (6 nodes, 14 links) 
provided by the SNDlib library [26]. As shown in Fig. 4, node 6 is used as egress, and node 
1 is used as ingress. In the substrate network, we assume that each node can be used as the 
service-providing node. Each node of the network represents a single data center, which can 
carry the physical resource capacity (e.g., CPU, memory, and storage).  
 

 
Fig. 4. Example network topology 

 
The choice of these simulation parameters as well as their distribution are motivated by 

simulations and evaluations of a well-studied and related virtual network embedding 
problem [27]. The main parameters that were used to create the virtual links and VNFs in 
these simulations are chosen randomly following a uniform distribution with minimum and 
maximum values shown in Table 2.  

 
Table 2. Simulation parameter ranges 

Parameter Minimum Maximum 
Number of substrate nodes 6 6 

Number of VNFs per service 2 5 
Function processed by each node 1 5 

Function processing times 15 30 
VNF or virtual link resource demand 0.5 0.8 
Substrate CPU or bandwidth capacity 100 150 
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5.1.2 Evaluation results  
We use a synthetic policy to evaluate our algorithm in terms of node load balancing, RSP 

load balancing, SFC request ratio, and running time. Our proposed algorithm is compared to 
four other SFC placement algorithms that have been widely used in the literature. The 
notations and description of different algorithms are listed in Table 3. The results of these 
simulations are shown in Figs. 5-8. In the following, we present these results. 

 
Table 3. Comparison of algorithms 

Algorithm Description 
TS [9] Tabu Search-based Network Function Mapping and Scheduling 

Greedy [12] The simple Greedy-based Network Function Mapping and Scheduling 
GFP [27] Greedy mapping with bias towards Fast Processing 
GLL [28] Greedy mapping with bias towards Least Loaded 

G-kSP  Greedy node mapping with k-Shortest Path link mapping  
 
Metric 1 Node Load Balancing: This is the load accumulation on the substrate node. The 
node load balancing can be computed as follows: 

       ( )
( )

s
i

s v v
k N i

v
i
sn
kn M n N

c nLB
r n∈ ∈

= ∑ ∑                                            (13) 

 
(a) Mean node load                                                   (b)  Maximum node load  

Fig. 5. Performance characteristic of the node load  
 

Fig. 5 shows the mean and maximum loads on each node (about 100 SFC requests). The 
results indicate that TS can achieve the largest mean node load, while the maximum node 
load is below that of the other four algorithms, which shows that TS finds better solutions in 
balancing the node. In contrast, Greedy is less effective and the other improved greedy 
algorithms G-kSP, GLL, and GFP lie in the middle of the compared algorithms. Among 
these, TS performs only slightly better than G-kSP. This is because TS has a chance to 
iteratively improve the solution; therefore, the node resource can be effectively utilized. The 
reason why G-kSP performs well could be attributed to the proposed greedy strategy, which 
improves the global network utilization. The reason why Greedy performs worse than the 
other schemes could be due to the fact that Greedy achieves higher node load by routing the 
traffic through a shorter path, and hence, Greedy falls a little short on optimal node 
placement. Ultimately, GLL performs better than GFP. This is because the least loaded 
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nodes are likely to have shorter queues, which implies that services mapped onto such nodes 
are processed earlier, and hence they do not occupy the node resources for extended periods. 
Metric 2 RSP Load Balancing: This is the load accumulation on the Service Function Path 
(RSP). Now, we can compute the RSP load balancing as follows: 

( , ) ( , )

( , )( )
( ) ( , )s v v s s v v v

k N i k l L i j

v vv
i ji

RSP N Ls s s
k k ln M n N n n M n n L

c n nc nLB
r n r n n∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑ω ω                      (14) 

Here, Nω  and Lω  represent the impact factors of the node load and the link load, 
respectively.  

 
Fig. 6.  RSP load comparison 

 
Fig. 6 shows the load on service function paths. As shown in Fig. 6, the curve of each 

algorithm gradually becomes gentler, with increasing number of arriving requests. This is 
because the decreasing of available resources leads to the rejection of service requests. As 
indicated in Fig. 6, our proposed G-kSP preforms significantly better than the other tested 
algorithms, while Greedy has the highest RSP load. This is because G-kSP focuses on 
allocating resources from the global perspective, while Greedy focuses on optimizing 
utilization of bandwidth resources, and the other algorithms TS, GLL, and GFP only focus 
on optimizing the utilization of CPU resources. The reason why TS performs only slightly 
better than GLL and GFP is because TS is specifically formulated with the objective of 
minimizing the flow time. This gives TS an advantage in utilizing the physical resource 
while balancing the load. Finally, GFP has a considerably higher value of RSP load 
compared to GLL. This is because this algorithm always tries to map a given VNF to the 
node that processes it faster. This means that a node that has the least processing time for any 
given VNF is likely to always be over loaded, thus extending the queue at such a path. 
Metric 3 Request Acceptance Rate: This is the ratio of the number of SFCs successfully 
deployed to the total number of SFC requests. Now, we can compute the request acceptance 
rate as follows:  

0
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T
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where 
0

T
acceptedt

SFC
=∑  represents the number of SFCs successfully deployed to the substrate 

network from 0t =  to t T= , 
0

T
totalt

SFC
=∑  represents the total number of SFC requests that 

arrive from 0t =  to t T= .  
Fig. 7 shows the variation of request acceptance ratio with service arrivals. The mean 

request acceptance rate of the Greedy algorithm is 74.9%, the mean request acceptance rate 
of TS is 89.3%, the mean request acceptance rate of GLL is 83.3%, the mean request 
acceptance rate of GFP is 78.6%; however, when G-kSP is used, the mean request 
acceptance rate is 93.1%. This is a measure of how efficiently the algorithm uses network 
resources to accept service requests. As shown in Fig. 7, G-kSP has the highest request 
acceptance rate, while Greedy has the lowest request acceptance rate. This is because G-kSP 
reduces the service path load and occupies less physical resources for longer periods, which 
could lead to receiving more SFC requests. Therefore, lower service path load results in a 
higher request acceptance rate. The fact that the Greedy algorithm performs worst because it 
prioritizes the service path with the lowest delay, and hence reuses the same path frequently, 
which could possibly lead to the rejection of service requests. Finally, we observe that the 
improved greedy scheme, which is biased towards favoring using nodes that are least loaded 
(GLL), performs better than GFP, which is based on favoring nodes with the best processing 
capacities. This is because least loaded nodes are likely to have shorter queues, which 
implies that VNFs mapped onto such nodes get processed earlier, and hence they do not 
occupy the node resources for extended periods, which could possibly lead to the rejection of 
service requests. 

 
Fig. 7. Request rate comparison                           Fig. 8. Running time comparison 
 

 
Metric 4 Running Time: This is the time required to find the service path placement for a 
given SFC request and network topology. Fig. 8 shows the running time with service arrivals. 
Towards the end of the simulation (at about 100 service requests), the running time of the 
Greedy algorithm is 881.7 milliseconds, the running time of TS is 192.6 milliseconds, the 
running time of GLL is 398.2 milliseconds, and the running time of GFP is 508.7 
milliseconds, while the running time of G-kSP is 40.1 milliseconds. The results show that the 
running time of Greedy is about 20 times longer than that of G-kSP. This is because Greedy 
searches for all the service paths based on the exhaustive method. Thus, Greedy performs 

)( nmO  computations (refer to [12]). However, the running time of TS is affected by the 
length of the Tabu list λ , TS performs 2( )O m mλ+  computations (refer to [9]). Finally, we 
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found that GLL performs better than GFP; GLL specifically ensures that VNFs are mapped 
to those substrate nodes with the lowest loading, which ultimately reduces the waiting times 
of their executions. Thus, the complexity of GLL is 2( )O kmn m+  (refer to [28]), where k  
represents the number of iterations. This is in contrast to GFP, which always tries to map a 
given VNF to the substrate node that processes it faster, which implies that other VNFs for 
the same service should wait for such a VNF. Thus, the complexity of GFP is 3 2( )O km n  
(refer to [27]). Combined with the analysis presented in Section 4.3, the trend of the curves 
in Fig. 8 is basically consistent with the theoretical analysis. 
 

5.2 Prototype implementation  
To demonstrate the effectivity of our proposed placement mechanism, its operation is shown 
on the NetFPGA-10G prototype. In this section, we follow the implementation method that 
was proposed by Gibb et al [29]. We used the 6-node network topology provided by [30]. 
Fig. 9 shows an overview of the NetFPGA-10G simulation environment, where six 
OpenFlow switches are managed by the OpenDaylight controller. The OpenDaylight 
controller provides an interface module of service chaining placement, which allows a third 
party to provide custom algorithms. Therefore, our G-kSP algorithm in this subsection is 
implemented in Java and added to the OpenDaylight controller via Eclipse.  
 

Host1

Host2

S1 S2

S3 S4

S5 S6

OpenFlow

Firewall NAT

10.0.0.1

10.0.0.2

Internet

Controller NAT

Firewall

 
Fig. 9. NetFPGA-10G Simulation Environment 

 
For the given network, OpenDaylight Helium release is used as the SDN controller and 

the OpenFlow 1.3 protocol is used as the south interface between the controller and switches. 
For the topology dataset, we use the traces available from [30] and replay the traffic for 
between random source-destination pairs. Real VNF modules (Firewall and, NAT) [31] are 
used to validate the effectivity of SFC placement. Each switch connects one single server, 
which provides VNF module in the network. Table 4 lists the parameters used for both 
servers and VNFs. 
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Table 4. Server and VNF data used in the simulation  
Server Data  

Physical CPU Cores Idle Energy Peak Energy 
16 80.5W 2735 

VNF Data 
Network Function CPU Required Processing Capacity 

Firewall 4 600Mbps 
NAT 4 900Mbps 

 

5.2.1 Placement validation 

OpenDaylight is the central administrator of the network, it obtains the global network, and 
can be used to programmatically configure forwarding flow tables in the switches, thus 
enabling VNF orchestration. The Firewall module can only be available on switch S3 and the 
NAT module can be available on the switch S4. Different SFC strategies can be configured 
by the OpenDaylight controller to satisfy the service demands of the tenant. The 
experimental results are shown in Table 5 and the execution of the experiment can be 
decomposed into five stages as follows: 
 Test 1. The policy P1 = {Host 1, Host 2} is added, namely, no VNF modules need to be 

placed. OpenDaylight automatically configures the forwarding flow table “dst = Host 2; 
actions = output: S2” onto S1 based on the shortest path algorithm. The data flow is 
driven to pass through switch S3 and S4, thus achieving communication between Host 1 
and Host 2.  

 Test 2. The policy is changed to P2 = {Host1, Host2, (Firewall)}, namely, only the 
Firewall module needs to be placed. The forwarding flow tables “dst=Host2; actions = 
output:  Firewall”, “dst = Host2; actions = output: S2” are automatically configured to 
the S3 and S4, respectively. The data flow firstly enters S3 for function processing, and 
then is forwarded to Host2 through S4. The service path can be described as “S1 S3

Firewall S4 S2”.  
 Test 3. The policy is changed to P3 = {Host1, Host2, (NAT)}, namely, only the NAT 

module needs to be placed. The corresponding forwarding flow tables “dst = Host2; 
actions = output: S4”, “dst = Host2; actions = output: NAT” are automatically 
configured to the switch S3 and S4, respectively. Therefore, S3 serves as the transition 
node, and S4 serves as the service node. The service path can be described as “S1 S3

S4 NAT S2”.  
 Test 4. The policy is changed to P4 = {Host1, Host2, (Firewall, NAT)}, namely, the 

Firewall and NAT modules need to be placed simultaneously. The forwarding flow 
tables “dst = Host2; actions = output: Firewall”, “dst = Host2; actions = output: NAT” 
are automatically configured to S3 and S4, and the service path can be described as “S1

S3 Firewall S4 NAT S2”.  
 

 Test 5.  The policy is changed to P5 = {Host1, Host2, (NAT, Firewall)}, namely, S3 and 
S4 fail to be configured with the corresponding function modules; therefore, the service 
path cannot be formed and Host1 and Host2 cannot communicate with each other.  
 
 
 
 

→ →
→ →

→
→ → →

→ → → → →
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Table 5. Experimental test results 
Test SFC policy Service path Delay 

1 P1 = {Host1, Host2} S1.output:S2 S2.output:Host2 0.2ms 

2 P2 = {Host1, Host2, (Firewall)} S1.output:S3 S3.Firewall S3.output:S4
S4.output:S2 S2.output:Host2 20.4ms 

3 P3 = {Host1, Host2, (NAT)} S1.output:S3 S3.output:S4 S4.NAT 
S4.output:S2  S2. output: Host2 30.6ms 

4 P4= {Host1, Host2, (Firewall, NAT)} S1.output:S3 S3.Firewall S3.output:S4

S4.NAT S4.output:S2 S2.output:Host2 50.9ms 

5 P5 = {Host1, Host2, (NAT, Firewall)} —  
 

As shown in Table 5, the communication delay between Host1 and Host2 is consistent 
with the theoretical analysis, and the service path is the identical to the one delivered. 

 

5.2.2 Resource utilization analysis 

We have configured that the bandwidth capacities of the upper path (S1 − S5 − S6 − S2) and 
the lower path (S1 − S3 − S4 − S2) are 1.5 Gbps and 1 Gbps, respectively. The connections 
need to be routed from Host1 to Host2, the real VNF module needs to be used (Firewall 
available on nodes S3 and S5, NAT available on nodes S2 and S4). The 30Mbps SFC request 
is repeatedly mapped between Host1 to Host2 onto the example topology. The sFlow-RT and 
host-sFlow are used to obtain the utilization of nodes and links. 

We compare the obtained results to three other SFC placement schemes, which have been 
developed in the OpenDaylight SFC project [32]. The notations and description of different 
algorithms are list in Table 6. The results of the simulations are shown in Fig. 10 and Fig. 11. 
In the following, these results are discussed. 

 
Table 6. Comparison of algorithms  

Algorithm Description 
Shortest-path  Shortest-path selects the candidate VNFs that minimizes the service path 
Round-robin  Round-robin assigns the candidate VNFs using cyclic selection 

Random  Candidate VNFs are selected randomly 
G-kSP  G-kSP selects the candidate VNFs that optimizes network utilization 

 
(a) Upper path allocation                                               (b)  Lower path allocation  

Fig. 10. Comparison of path allocation 

→
→ →

→ →
→ → →
→
→ →

→ → →
∞



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                    4657 

 
Fig. 10 shows the bandwidth allocation on both upper and lower path. The first 20 

connection requests of the G-kSP algorithm are assigned to the upper path due to its higher 
resource capacity. Note that the processing resource allocation is split between nodes S5 and 
S6 proportionally to their capacity. Since the network loads on the upper path, the lower path 
is preferred and connection requests 20 through 50 are both service paths, with the majority 
going to the lower path. For the shortest-path algorithm, the entire 50 connection requests are 
always assigned to the upper path due to the higher resource capacity. For the random 
algorithm, the entire 50 connection requests are randomly assigned to the upper path. For the 
round-robin algorithm, the entire 50 connection requests are assigned to the upper path and 
the lower path via cyclic selection. The reason that G-kSP performs better than the other 
tested schemes is because our proposed scheme has a chance to iteratively improve network 
utilization. 

 
Fig. 11. Comparison of node allocation 
 

Fig. 11 shows the flow table number on nodes. As the network reaches its capacity, G-
kSP can balance the node significantly better than the tested other schemes. The reason why 
G-kSP outperforms the others could be attributed to ensuring that it consistently achieves 
higher resource utilization and dynamic resource allocation across all mappings. This 
ensures that the number of used nodes remains large, thus balancing the loads on the nodes 
and achieving higher resource utilization. However, Random, Round-robin, and Shortest-
path achieve lower resource utilization, because during all mappings, resources are used on 
clearly suboptimal paths in a static manner.                            

6. Conclusion 
To solve the SFC placement problem in the SDN/NFV environment, an optimal model with 
applicable constraints is formulated. This problem has been solved via the Integer Linear 
Programming (ILP). The ILP model has limited applicability due to both resource 
consumption and computational complexity. To resolve this limitation, a G-kSP placement 
approach is proposed based on the two-step algorithm. Built on the top of SDN and the 
advantages of the Greedy heuristic algorithm, our placement strategy can simultaneously 
obtain the optimal placement of virtual network functions and routing optimal paths. 
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Simulation showed that the algorithm can optimize the network resource utilization, request 
acceptance rate, and running time, compared to Greedy, Tabu, GLL, and GFP algorithms, 
which have already been studied for the SFC placement problem. Our trace driven on the 
NetFPGA-10G demonstrates that the G-kSP can improve network utilization, compared to 
Round-robin, Shortest-path, and Random schemes, which have already been developed in 
the OpenDaylight SFC project. In our future work, it will be important to explore the 
possibility of introducing failure-resilience by placing backup VNFs and virtual links that 
can take over the traffic processing tasks from failed SFC. 
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