
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, Oct. 2018 4640
Copyright ⓒ 2018 KSII

A Dynamic Placement Mechanism of
Service Function Chaining Based on

Software-defined Networking
Yicen Liu, Yu Lu, Xingkai Chen, Xi Li, Wenxin Qiao and Liyun Chen

Shijiazhuang Campus, Army Engineering University of PLA
Shijiazhuang, Hebei 050003 - China

 [e-mail: oecluyu@sina.com]
*Corresponding author: Yu Lu

Received December 25, 2017; revised April 18, 2018; accepted June 5, 2018;

 published October 31, 2018

Abstract

To cope with the explosive growth of Internet services, Service Function Chaining (SFC)
based on Software-defined Networking (SDN) is an emerging and promising technology that
has been suggested to meet this challenge. Determining the placement of Virtual Network
Functions (VNFs) and routing paths that optimize the network utilization and resource
consumption is a challenging problem, particularly without violating service level
agreements (SLAs). This problem is called the optimal SFC placement problem and an
Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is
also provided based on an improved two-step mapping algorithm. The obtained experimental
results show that the proposed algorithm can automatically place VNFs at the optimal
locations and find the optimal routing paths for each online request. This algorithm can
increase the average request acceptance rate by about 17.6% and provide more than 20-fold
reduction of the computational complexity compared to the Greedy algorithm. The
feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation.

Keywords: Software-defined networking, service function chaining placement, integer

linear programming, greedy heuristic solution

 This research was supported by the National Natural Science Foundation of China [No. 51377170,61271152]
and National Youth Science Foundation of China [No. 61602505]. We express our thanks to Dr. Waleed Ejaz
who checked our manuscript.

http://doi.org/10.3837/tiis.2018.10.002 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4641

1. Introduction

In recent years, the demand for Internet services has constantly expanded due to the
explosive propagation of mobile devices and the emergence of novel networking paradigms
such as the Internet of Things (IoTs) [1]. Today’s networks ubiquitously deploy vertically
integrated proprietary middleboxes (e.g., Firewall, Intrusion Detection System (IDS), and
Network Address Translation (NAT)). However, the static service model causes two main
problems: Firstly, the traditional middlebox comes at the cost of high Capital Expenditure
(CAPEX) and Operating Expenditure (OPEX). Secondly, it is impossible to add new
functionality to an existing middlebox, which makes it hard for network operators to place
new services. Consequently, the new dynamic service model research has become a hot topic
[2-3].

Both the promising Software-defined Networking (SDN) [4] network architecture and
Network Function Virtualization (NFV) [5] technology can solve these outlined problems.
SDN decouples the control plane from the data plane. The controller is the central
administrator of the network, it obtains the global network and can be used to
programmatically configure forwarding flow tables in the switches, thus enabling Virtualized
Network Function (VNF) orchestration. NFV proposes to move the packet processing from
hardware middleboxes toward software, thus providing possibilities for network
optimization and cost reduction. The dynamic Service Function Chaining (SFC) is an enabler
of the SDN/NFV networking paradigm. It provides a flexible and economical alternative to
today’s static network environment for application service providers (ASPs) and Internet
service providers (ISPs).

At present, dynamic SFC technology is still in its infancy. However, the optimal
placement is one of the most challenging problems in the NFV-based network [6-8].
Significant current research focuses on the single aspect of resource utilization. For example,
Mijumbi et al. used the Tabu Search algorithm that performs both mapping and scheduling
of VNFs by searching for better solutions in its neighborhood [9]. Deval et al. proposed the
Affinity-based heuristic algorithm that considers the cache capacity of a node with priority.
However, this approach causes a longer VNF processing waiting time [10]. Xiong et al.
proposed a service function placement mechanism, which is biased towards favoring the use
of nodes that are loaded the least [11]. Zhang et al. proposed a scalable framework (called
StEERING) for dynamic traffic routing through the proper VNF sequence. The Greedy
algorithm which is biased towards favoring using paths that are least loaded was proposed.
However, this approach results in unbalanced network loads [12]. Bari et al. used a Viterbi
algorithm to place the service function chaining, which considers the total cost of the entire
service path, without considering resource utilization [13]. The same algorithm has also been
used by the authors Liu et al. However, this approach has been abandoned due to
computational complexity [14].

The above studies are either solely based on node resource utilization or on making only
some preliminary explorations regarding link resource utilization. Few studies have designed
a specific placement strategy that considers global network utilization, which is the focus in
this paper. Here, we denote the optimal SFC placement problem, focusing on how to place
the VNFs at the optimal locations and how to find optimal routing paths, with the objective
of minimizing resource consumptions while simultaneously balancing the network loads.
Specifically, the contributions of this paper are:

4642 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

1. The service function chaining placement problem is theoretically formulated by the
integer linear programing model.

2. A novel greedy heuristic solution is proposed based on the improved two-step mapping
algorithm, and the performance is evaluated via Matlab.

3. The effectivity of our placement mechanism is validated on an SDN framework with
OpenDaylight [15], NetFPGA-10G [16] and sFlow [17].

The remainder of this paper is organized as follows: we start by introducing the
SDN/NFV-based architecture and by formally explaining the network model of our system
(Section 2). Then, the integer linear programming (ILP) formulation is presented (Section 3).
Next, a novel greedy heuristic algorithm is proposed that obtains the near-optimal solution
(Section 4). Our proposed solution is validated via Matlab and a NetFPGA-10G prototype
implementation is given (Section 5). Finally, we conclude this work by providing promising
future directions (Section 6).

2. Network Model

2.1 SDN/NFV-based architecture
Fig. 1 provides an overview of our architecture. The components of the architecture can be
classified into three types including the orchestration plane, the control plane and the data
plane. The orchestration plane is the development environment of VNFs, and its main role is
to manage and orchestrate the VNFs to control the global network, according to different
network demands and application scenarios. The control plane can programmatically
configure forwarding flow tables in the switches to enable VNF orchestration. The SDN
controller plays a key role in mapping VNFs and virtual links onto the substrate network
based on a specific placement strategy, and consequently form the service path. The data
plane mainly includes routers/switches and NFV platforms, which forwards the traffic flow
and provides service processing.

Management
 server

Orchestration plane

SDN controller

Global view

PN 1

PN 2

PN 3

PN 4

PN 5

VNF1
VNFn

 Control plane

Network demands

Network state

 Data plane

Data flow

Logical function
chaining

Fig. 1. Overview of the service function chaining placement using SDN

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4643

2.2 Placement Model
The placement process of service chaining is formulated as a two-level model, which
includes the “SFC Policy—Logical Function Chaining” process and the “Logical Function
Chaining—Service Path” process. Fig. 2 provides an overview of this two-level model. The
“SFC Policy—Logical Function Chaining” process is a dynamic choreography of VNFs
implemented by applications through northbound interfaces. The “Logical Function
Chaining — Service Path” process allocates the physical resources reasonably through
southbound interfaces.
Definition 1. SFC Policy. The SFC policy is represented by a 4-tuple 1 2{ , , (, ,...), }s t mP v v c c c t= ,
where sv and tv denote the ingress and egress switches, respectively. 1 2{ , ,... }mC c c c=
represents the ordered VNF sequence the traffic flow must pass (e.g.,
NAT Firewall IDSS S). τ denotes the expected propagation delay according to the SLAs
and m is the number of service functions.
Definition 2. Logical Function Chaining. Logical function chaining is formed by the VNF
function modules based on the SFC policy. Here, we assume that all deployable nodes and
their contextual relationships have been defined as a directed graph),(vvv LNG = , where

1 1 1{ ..., , , ,... |1 }v v v v v v
i i i mN n n n n n i m− += ≤ ≤ represents the set of traffic nodes (switches and VNFs)

and }1|),...,{(mjinnL v
j

v
i

v ≤<≤= denotes the links between them.
Definition 3. Service Path. We place the VNFs at the optimal locations and obtain the
optimal routing path based on the placement strategy, then forming a service path. Here, we
assume that the substrate network is defined as an undirected graph),(sss LNG = , with the
node set 1 1 1{ ,..., , , ... |1 }s s s s s s

j j j kN n n n n n j n− += ≤ ≤ representing substrate nodes and the edge set
{(,),... |1 }s s s

i jL n n i j n= ≤ < ≤ representing substrate links.

SFC Policy

VNF 1
 VNF 2

VNF 3
VNF 4

Logical Function Chaining

Ingress
Egress

Service Path

InstantiationMapping

Services
providing

VNFs
combination

Orchestration plane

Control plane

Data plane

Fig. 2. The “SFC Policy—Logical Function Chaining—Service Path” process

4644 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

The procedure of our placement is as follows: Firstly, the orchestration plane can

orchestrate the VNFs based on the SFC policy, which satisfies the requirements of the tenant.
Secondly, the SDN controller runs the service placement decision module, which solves the
optimization problem of minimizing the resource consumption. Finally, the results of the
decision module are output of the configuration to map a logical function chaining to the
substrate network via the uniform APIs. If the mapping is successful, the corresponding
instantiation resource is allocated, and then the service path is formed; otherwise, the
mapping fails. As shown in Fig. 2, the shaded nodes represent the substrate nodes where the
VNFs are placed, while the unshaded substrate nodes only forward data flow.

3. Integer Linear Programming (ILP) Formulation
In this section, we introduce the problem of minimizing the total resource consumption for
each SFC mapping in the NFV-based networks as an ILP optimization problem. The goal of
the presented optimization model is to minimize the total physical resource consumption to
the ISPs, thus satisfying other constraints such as the site capacity constraint, the link
capacity constraint, and the placement constraint (due to SLAs, which will be explained
later). We formulated the optimization model to deploy workflows on the VNFs and assign
client requests to these workflows to meet the service demands. The resource consumption
can be divided into two categories: VNF resources consumption and virtual link resources
consumption. Consequently, an optimization model with applicable constraints is formulated
and the SFC placement problem can be solved via an Integer Linear Programming (ILP)
methodology. The list of variables used in the ILP is provided in Table 1.

Table 1. Variables used in the ILP
Variable Explanation

s
k
v
i

n
n

x If the VNF node v v
in N∈ is located in the substrate node s s

kn N∈
,
,

s s
k l
v v
i j

n n
n n

y If the virtual link (,)v v v
i jn n L∈ is located in the substrate link (,)s s s

k ln n L∈

)(v
inc Amount of requested CPU resources for the VNF node v v

in N∈

)(s
knr Amount of remaining CPU resources for the substrate node s s

kn N∈
(,)v v

i jc n n Amount of requested bandwidth resources for the virtual link (,)v v v
i jn n L∈

),(s
l

s
k nnr Amount of remaining bandwidth resources for the substrate link (,)s s s

k ln n L∈
()s

kD n Maximum VNF processing delay on the substrate node s s
kn N∈

(,)s s
k lD n n Maximum communication delay along the substrate link (,)s s s

k ln n L∈

Consider the problem of optimal SFC mapping in a NFV-enabled network.
s
k
v
i

n
n

x is

introduced to indicate which of the VNFs v v
in N∈ can be provisioned on a substrate node

s s
kn N∈ . That is:

1 a VNF is provisioned on ,
=

0 otherwise.
s
k
v
i

v v s s
n i k
n

n N n N
x

 ∈ ∈



The binary variable ,
,

s s
k l
v v
i j

n n
n n

y is introduced to formulate the routing of the service chaining.

Therefore:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4645

 ,
,

1 a virtual link (,) is provisioned on (,) ,
=

0 otherwise.
s s
k l
v v
i j

v v v s s s
n n i j k l
n n

n n L n n L
y

 ∈ ∈



The following lists the constraints of the optimization model:
1) Site capacity constraint: the total load of the CPU resource across all SFC requests

and all VNFs at each substrate node s s
kn N∈ should be less than or equal to its CPU

capacity. We express this constraint as follows:
() (), ,

s
k
v
i

n v s v v s s
i k i kn

x c n r n n N n N× ≤ ∀ ∈ ∈ (1)

2) Link capacity constraint: the total load of the bandwidth resource across all SFC
requests and all logical links at each substrate link (,)s s s

k ln n L∈ should be less than or
equal to its bandwidth capacity. We represent this constraint as follows:

,
,

(,) (,), (,) ,(,)
s s
k l
v v
i j

n n v v s s s s s v v v
i j k l k l i jn n

y c n n r n n n n L n n L× ≤ ∀ ∈ ∈ (2)

3) Delay constraint: for wide area service chaining, the end to end delay of each SFC
request should be less than or equal to PD . This delay includes both the VNF
processing delay at the datacenter sites and the communication delay along the links.
We present the delay constraints for the service path as follows:

,
,

(,) (,)

(,) () , , , (,) ,(,)
s s s
k l k
v v v
i j is s s v v v v v s s

k l i j i k

n n ns s s P v v s s s s s v v v
k l k i k k l i jn n n

n n L n n L n N n N

y D n n x D n D n N n N n n L n n L
∈ ∈ ∈ ∈

× + × ≤ ∀ ∈ ∈ ∈ ∈∑ ∑ ∑ ∑ (3)

4) Connectivity constraint: we present the connectivity constraint that ensures both the
in-flow and out-flow of each switch in the substrate network are equal except at the
ingress and egress switches. This constraint is represented as follows:

, ,
, ,

(,) (,)

() , , , (,) ,(,)
s s s s s s
k l k l k l
v v v v v v
i j j i i iv v s s s v

i j k l

n n n n n n v v s s s s s v v v
i k k l i jn n n n n n

n n L n n L

y y x x n N n N n n L n n L
∈ ∈

− = − ∀ ∈ ∈ ∈ ∈∑ ∑ (4)

5) Placement constraint: to ensure that every traffic node is provisioned onto exactly
one VNF; we also need to ensure that every link in a traffic request is provisioned on
one or more substrate links within the networks. We present the placement constraint
as follows:

1, ,
s
k
v
iv v s s

i k

n v v s s
i kn

n N n N

x n N n N
∈ ∈

= ∀ ∈ ∈∑ ∑ (5)

, ,
, ,

(,) (,)

() 0, (,) ,(,)
s s s s
k l k l
v v v v
i j i jv v s s s v

i j k l

n n n n s s s v v v
k l i jn n n n

n n L n n L

y y n n L n n L
∈ ∈

+ ≥ ∀ ∈ ∈∑ ∑ (6)

6) Variable constraint: to ensure that the values of
s
k
v
i

n
n

x and ,
,

s s
k l
v v
i j

n n
n n

y equal 0 or 1, we must

have:
{0,1}, ,

s
k
v
i

n v v s s
i kn

x n N n N∈ ∀ ∈ ∈ (7)
,
,

{0,1}, (,) ,(,)
s s
k l
v v
i j

n n s s s v v v
k l i jn n

y n n L n n L∈ ∀ ∈ ∈ (8)

Now, given a set of network services, each of which requiring a strictly ordered chaining
of network functions as corresponding traffic traverses, the fundamental objective is to
efficiently place VNFs to the datacenter sites and map virtual links to substrate links that can
satisfy all constraints mentioned above while minimizing resource consumption across the
network. This objective can be mathematically described as:

4646 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

,
,

(,)() (,)
s s s
k k l
v v v
i i jv v v v v

i i j

n n n
s s sn n n
k k ln N n n L

Minimize x y
r n r n n

α β
δ δ∈ ∈

+
+ +∑ ∑ (9)

Here, α and β are weighting factors that are used to adjust the relative importance of the

resource consumption components. δ represents as a minimum value, which ensures the
nonzero property of the denominator. To improve the utilization of the physical resources,

()s
kr n and (,)s s

k lr n n are taken as denominators so that the placement strategy can be more
inclined to nodes or links, which contain the largest amount of the remaining resources.

The SFC placement problem is NP-Hard since we can reduce this problem to the Multi-
Commodity, Multi-Plant, and Capacitated Facility Location Problem [18], which is more
commonly known as the Trans-Shipment Problem [19] by imposing a constraint on the
appropriate number of VNFs that can be deployed in the network. Both of these problems
are known to be NP-hard. Therefore, the SFC placement problem is also NP-Hard. The
method to solve this problem can be divided into two categories: an exact algorithm and a
heuristic algorithm [20]. The exact algorithm has limited applicability due to its
computational complexity. However, the heuristic algorithm can be used to obtain the near-
optimal solution of the placement problem within a polynomial time. Therefore, we propose
a heuristic algorithm to solve this problem in the next section.

4. Greedy Heuristic Solution
In this section, we present a greedy heuristic to solve the SFC placement problem. Rost et al.
[21], Schmid et al. [22] and Moens et al. [23] have reported that the heuristic algorithm
achieves good performance in dealing with integer linear programming. In this study, we
extend the baseline two-step mapping algorithm [24] with several improvements, such as
greedy strategy, sorting mechanism, and k-Dijkstra algorithm. Then, the Greedy node
mapping with k-Shortest Path link mapping algorithm (called G-kSP) is proposed to obtain
the optimal SFC placement for the ILP model.

4.1 Introduction of the G-kSP algorithm
Existing schemes either focus exclusively on the resource utilization of nodes or on the
resource utilization of links. To overcome this narrow focus, an improved two-step mapping
algorithm is presented that efficiently assigns both VNFs and virtual links onto the substrate
network for each online SFC request, with the objective of minimizing the resource
consumption to the ISPs. In our G-kSP algorithm, the requested resource, the remaining
resource and the QoS are considered. The requested resources can be decomposed into the
requested CPU resources for the VNFs and the requested bandwidth resources for the virtual
links. The remaining physical resource includes the remaining CPU resources for the
substrate nodes and the remaining bandwidth resources for the substrate links.

This algorithm keeps track of the available node/link resources of the substrate network.
Note that for the substrate node s s

kn N∈ , we do not use)(s
knr alone as the metric of the

available resource, because we not only want to ensure sufficient available CPU capacity,
but also consider bandwidth capacity to prepare the subsequent virtual link mapping stage.
Therefore, we define the amount of available resources for the substrate node s

kn via:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4647

∑
∈

=
)(

)()()(
s
k

s
k nEe

s
k

s
k

s
k ernrnR (10)

where)(s

knE represents the set of all adjacent substrate links of s
kn ,)(s

knr represents the

remaining CPU resource of s
kn , and)(s

ker represents the unoccupied bandwidth resource
for the substrate link s

ke .
Thus, for a VNF node v v

in N∈ , the requested resource ()v
iC n is computed as follows:

()

() () ()
v v
i i

v v v
i i i

e E n

C n c n c e
∈

= ∑ (11)

where ()v
iE n represents the set of all adjacent virtual links for v

in , ()v
ic n represents the

CPU requirements for the VNF node v
in , and ()v

ic e represents the bandwidth requirements
for the virtual link v

ie .
The greedy heuristic algorithm mainly runs in two steps. Firstly, the VNF nodes are

sorted in a descending manner based on their resource requirements, and a near-optimal
VNF placement is obtained by running the greedy strategy, which prioritizes the substrate
node with maximum available resources. Then, the k-shortest path algorithm is used to
produce an approximation approach to minimize the bandwidth consumption via virtual link
mapping. For the former approach, the sorting mechanism can obtain the optimal service
path without requiring global searching, and the proposed greedy strategy can optimize
operational network utilization. For the latter approach, the k-shortest path algorithm can
find optimal mapping from a virtual link between VNFs to specific substrate links.

4.2 Formulation of the G-kSP algorithm

The main steps of the G-kSP algorithm can be described as follows:

Input: Substrate network topology sG , SFC requests P
Output: VNF mapping set { }()s s s

N i iM n n N∀ ∈ , virtual link mapping set { }(,) (,)s s s s s
L i j i jM n n n n L∀ ∈

Step 1. Acquisition of the VNF queue Q . Q contains the mapping order of VNFs. Sort the
VNFs in descending order based on their requested resources (defined in Equation (11)),
then store this VNFs in queue Q .
Step 2. Acquisition of the mappable set M . M contains the substrate nodes that satisfy the
constraints mentioned above. Find the mappable node set M of the substrate node that
satisfies both the restrictions and available resources. If this is found, store substrate nodes in
set M ; otherwise, open new VMs for VNF mapping.

4648 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

Step 3. Placing the VNF at optimal locations. Take out the first VNF in queue Q , and map
the VNF to the substrate node with “maximum available resources” (as defined in Equation
(12)). If the VNF v

in is successfully mapped to the substrate node s
kn , 1=

s
k
v
i

n
nx , store it in

set NM ; otherwise, trace back to the suboptimal solution in the mappable node set M .
Update queue Q .

{ }ˆ ˆ arg max (),s s s s s s
k k k k kn n n R n n N= = ∀ ∈ (12)

Step 4. Acquisition of the VNF mapping set NM . NM contains the placement information
of the VNFs. Determine whether there is the remaining VNF in queue Q . If feasible, go to
Step 3 and execute the next VNF in queue Q ; otherwise, obtain the set NM .
Step 5. Acquisition of the k-shortest path set R . R contains k paths with minimum transport
bandwidth between ingress and egress. Find the k-shortest paths from ingress node sv to
egress node tv by using the K-Dijkstra algorithm, while preserving the set NM and the
ordering of VNFs Pϕ . Denote the k-shortest paths as 1 2{ , ,..., }kR r r r= .
Step 6. Finding the optimal routing path LM . LM contains the placement information of the
virtual links. Sort R in descending order based on the occupied bandwidth resource (,)v v

i jc n n ,

and take the path with the minimum occupied bandwidth resource. If the virtual link (,)v v
i jn n is

successfully mapped to the substrate link (,)s s
k ln n , and 1,

, =
s
l

s
k

v
j

v
i

nn
nny , store it in set LM ;

otherwise, trace back to the suboptimal solution in the set R .
Step 7. Monitor the service time and allocate physical resources. Determine whether the
service path should preserve QoS (defined in Equation (3)). If feasible, the corresponding
instantiation resource is assigned; otherwise, reclaim allocated resources. Then, update the
network state information.

Based on the provided description, we input all algorithm parameters and call the G-kSP
algorithm to obtain the SFC placement scheme. The process flow is shown in Fig. 3. Upon
the controller, the decision module runs the G-kSP algorithm, and achieves the results

()s
N iM n and (,)s s

L i jM n n , which represent the locations of the VNFs and virtual links,
respectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4649

Start

Sort the VNFs in descending order based on the
requested resource , donated as Q

 Take the first VNF node in set Q

Sort the PNs that satisfy restrictions in
descending order based on the remaining

resource , donated as M

Find the substrate node in M with the
“maximum available resources”(defined in

Equation(12))

If feasible?

Update the remaining resources of
all adjacent substrate node of

Yes

s
kn

No

k=k+1

k>m?No

Yes

Map the VNF onto the newly opened VM

If feasible?

Yes

No

Yes

Failure

Remove the mapped VNF from the set Q

If Q= =Ø ?

Yes

No

Search the k-shortest paths and find one that
occupies minimum bandwidth resource while

satisfying restrictions

If feasible?

Finish

Yes

No

v
in

v
in

Fig. 3. Process flow of G-kSP algorithm

4.3 Algorithm Complexity
The G-kSP placement algorithm proposed here aims to work around the complexity of the
formulated ILP. Here, we assume that a network supports a constant number of network
services. Let the number of the substrate nodes and the maximum length of a service
chaining be m and n , respectively. For each network service, the main processes of the
proposed G-kSP are: i) placing the VNF at the optimal locations and ii) finding the optimal
routing path. The first process is based on both the sorted mechanism and greedy strategy. It
is well known that this process has a certain complexity, which follows the order of

)log(nnO . In the second part of the proposed algorithm, the K-Dijkstra algorithm has a
complexity of)log(MnnKO ++ . In conclusion, the complexity is)log(MnnKO ++ for the
process of one SFC request.

5. Performance Evaluation
Our performance evaluation focuses on the following aspects: (i) analyze the performance of
the proposed G-kSP algorithm on the 6-nodes network topology adopted by SNDlib library.

4650 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

Compare the performance of our solution to that of the Greedy, Tabu Search, GFP, and GLL
based optimal solutions, which have already been studied in the literature for the SFC
placement problem; (ii) perform trace driven simulations on an SDN framework with
OpenDaylight, NetFPGA-10G, and sFlow, verify the effectivity of the proposed G-kSP
algorithm, and compare the performance of our algorithm to that of Shortest-path, round-
robin, and Random, which has already been developed in the OpenDaylight SFC project.

5.1 Algorithm evaluation

5.1.1 Experimental workloads
To evaluate the performance of the proposed algorithm, the experimental environment is set
up on a PC with a 3.6 GHz two core Intel® CoreTM i7 and 8GB RAM. The GT-ITM tool [25]
is used to generate different network topologies and the G-kSP algorithm is implemented
with MATLAB. For the topology dataset, we use the datacenter network (6 nodes, 14 links)
provided by the SNDlib library [26]. As shown in Fig. 4, node 6 is used as egress, and node
1 is used as ingress. In the substrate network, we assume that each node can be used as the
service-providing node. Each node of the network represents a single data center, which can
carry the physical resource capacity (e.g., CPU, memory, and storage).

Fig. 4. Example network topology

The choice of these simulation parameters as well as their distribution are motivated by

simulations and evaluations of a well-studied and related virtual network embedding
problem [27]. The main parameters that were used to create the virtual links and VNFs in
these simulations are chosen randomly following a uniform distribution with minimum and
maximum values shown in Table 2.

Table 2. Simulation parameter ranges

Parameter Minimum Maximum
Number of substrate nodes 6 6

Number of VNFs per service 2 5
Function processed by each node 1 5

Function processing times 15 30
VNF or virtual link resource demand 0.5 0.8
Substrate CPU or bandwidth capacity 100 150

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4651

5.1.2 Evaluation results
We use a synthetic policy to evaluate our algorithm in terms of node load balancing, RSP

load balancing, SFC request ratio, and running time. Our proposed algorithm is compared to
four other SFC placement algorithms that have been widely used in the literature. The
notations and description of different algorithms are listed in Table 3. The results of these
simulations are shown in Figs. 5-8. In the following, we present these results.

Table 3. Comparison of algorithms

Algorithm Description
TS [9] Tabu Search-based Network Function Mapping and Scheduling

Greedy [12] The simple Greedy-based Network Function Mapping and Scheduling
GFP [27] Greedy mapping with bias towards Fast Processing
GLL [28] Greedy mapping with bias towards Least Loaded

G-kSP Greedy node mapping with k-Shortest Path link mapping

Metric 1 Node Load Balancing: This is the load accumulation on the substrate node. The
node load balancing can be computed as follows:

 ()
()

s
i

s v v
k N i

v
i
sn
kn M n N

c nLB
r n∈ ∈

= ∑ ∑ (13)

(a) Mean node load (b) Maximum node load

Fig. 5. Performance characteristic of the node load

Fig. 5 shows the mean and maximum loads on each node (about 100 SFC requests). The
results indicate that TS can achieve the largest mean node load, while the maximum node
load is below that of the other four algorithms, which shows that TS finds better solutions in
balancing the node. In contrast, Greedy is less effective and the other improved greedy
algorithms G-kSP, GLL, and GFP lie in the middle of the compared algorithms. Among
these, TS performs only slightly better than G-kSP. This is because TS has a chance to
iteratively improve the solution; therefore, the node resource can be effectively utilized. The
reason why G-kSP performs well could be attributed to the proposed greedy strategy, which
improves the global network utilization. The reason why Greedy performs worse than the
other schemes could be due to the fact that Greedy achieves higher node load by routing the
traffic through a shorter path, and hence, Greedy falls a little short on optimal node
placement. Ultimately, GLL performs better than GFP. This is because the least loaded

4652 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

nodes are likely to have shorter queues, which implies that services mapped onto such nodes
are processed earlier, and hence they do not occupy the node resources for extended periods.
Metric 2 RSP Load Balancing: This is the load accumulation on the Service Function Path
(RSP). Now, we can compute the RSP load balancing as follows:

(,) (,)

(,)()
() (,)s v v s s v v v

k N i k l L i j

v vv
i ji

RSP N Ls s s
k k ln M n N n n M n n L

c n nc nLB
r n r n n∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑ω ω (14)

Here, Nω and Lω represent the impact factors of the node load and the link load,
respectively.

Fig. 6. RSP load comparison

Fig. 6 shows the load on service function paths. As shown in Fig. 6, the curve of each

algorithm gradually becomes gentler, with increasing number of arriving requests. This is
because the decreasing of available resources leads to the rejection of service requests. As
indicated in Fig. 6, our proposed G-kSP preforms significantly better than the other tested
algorithms, while Greedy has the highest RSP load. This is because G-kSP focuses on
allocating resources from the global perspective, while Greedy focuses on optimizing
utilization of bandwidth resources, and the other algorithms TS, GLL, and GFP only focus
on optimizing the utilization of CPU resources. The reason why TS performs only slightly
better than GLL and GFP is because TS is specifically formulated with the objective of
minimizing the flow time. This gives TS an advantage in utilizing the physical resource
while balancing the load. Finally, GFP has a considerably higher value of RSP load
compared to GLL. This is because this algorithm always tries to map a given VNF to the
node that processes it faster. This means that a node that has the least processing time for any
given VNF is likely to always be over loaded, thus extending the queue at such a path.
Metric 3 Request Acceptance Rate: This is the ratio of the number of SFCs successfully
deployed to the total number of SFC requests. Now, we can compute the request acceptance
rate as follows:

0

0

lim

T
acceptedt

TT
totalt

SFC

SFC
η =

→∞
=

=
∑
∑

 (15)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4653

where
0

T
acceptedt

SFC
=∑ represents the number of SFCs successfully deployed to the substrate

network from 0t = to t T= ,
0

T
totalt

SFC
=∑ represents the total number of SFC requests that

arrive from 0t = to t T= .
Fig. 7 shows the variation of request acceptance ratio with service arrivals. The mean

request acceptance rate of the Greedy algorithm is 74.9%, the mean request acceptance rate
of TS is 89.3%, the mean request acceptance rate of GLL is 83.3%, the mean request
acceptance rate of GFP is 78.6%; however, when G-kSP is used, the mean request
acceptance rate is 93.1%. This is a measure of how efficiently the algorithm uses network
resources to accept service requests. As shown in Fig. 7, G-kSP has the highest request
acceptance rate, while Greedy has the lowest request acceptance rate. This is because G-kSP
reduces the service path load and occupies less physical resources for longer periods, which
could lead to receiving more SFC requests. Therefore, lower service path load results in a
higher request acceptance rate. The fact that the Greedy algorithm performs worst because it
prioritizes the service path with the lowest delay, and hence reuses the same path frequently,
which could possibly lead to the rejection of service requests. Finally, we observe that the
improved greedy scheme, which is biased towards favoring using nodes that are least loaded
(GLL), performs better than GFP, which is based on favoring nodes with the best processing
capacities. This is because least loaded nodes are likely to have shorter queues, which
implies that VNFs mapped onto such nodes get processed earlier, and hence they do not
occupy the node resources for extended periods, which could possibly lead to the rejection of
service requests.

Fig. 7. Request rate comparison Fig. 8. Running time comparison

Metric 4 Running Time: This is the time required to find the service path placement for a
given SFC request and network topology. Fig. 8 shows the running time with service arrivals.
Towards the end of the simulation (at about 100 service requests), the running time of the
Greedy algorithm is 881.7 milliseconds, the running time of TS is 192.6 milliseconds, the
running time of GLL is 398.2 milliseconds, and the running time of GFP is 508.7
milliseconds, while the running time of G-kSP is 40.1 milliseconds. The results show that the
running time of Greedy is about 20 times longer than that of G-kSP. This is because Greedy
searches for all the service paths based on the exhaustive method. Thus, Greedy performs

)(nmO computations (refer to [12]). However, the running time of TS is affected by the
length of the Tabu list λ , TS performs 2()O m mλ+ computations (refer to [9]). Finally, we

4654 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

found that GLL performs better than GFP; GLL specifically ensures that VNFs are mapped
to those substrate nodes with the lowest loading, which ultimately reduces the waiting times
of their executions. Thus, the complexity of GLL is 2()O kmn m+ (refer to [28]), where k
represents the number of iterations. This is in contrast to GFP, which always tries to map a
given VNF to the substrate node that processes it faster, which implies that other VNFs for
the same service should wait for such a VNF. Thus, the complexity of GFP is 3 2()O km n
(refer to [27]). Combined with the analysis presented in Section 4.3, the trend of the curves
in Fig. 8 is basically consistent with the theoretical analysis.

5.2 Prototype implementation
To demonstrate the effectivity of our proposed placement mechanism, its operation is shown
on the NetFPGA-10G prototype. In this section, we follow the implementation method that
was proposed by Gibb et al [29]. We used the 6-node network topology provided by [30].
Fig. 9 shows an overview of the NetFPGA-10G simulation environment, where six
OpenFlow switches are managed by the OpenDaylight controller. The OpenDaylight
controller provides an interface module of service chaining placement, which allows a third
party to provide custom algorithms. Therefore, our G-kSP algorithm in this subsection is
implemented in Java and added to the OpenDaylight controller via Eclipse.

Host1

Host2

S1 S2

S3 S4

S5 S6

OpenFlow

Firewall NAT

10.0.0.1

10.0.0.2

Internet

Controller NAT

Firewall

Fig. 9. NetFPGA-10G Simulation Environment

For the given network, OpenDaylight Helium release is used as the SDN controller and

the OpenFlow 1.3 protocol is used as the south interface between the controller and switches.
For the topology dataset, we use the traces available from [30] and replay the traffic for
between random source-destination pairs. Real VNF modules (Firewall and, NAT) [31] are
used to validate the effectivity of SFC placement. Each switch connects one single server,
which provides VNF module in the network. Table 4 lists the parameters used for both
servers and VNFs.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4655

Table 4. Server and VNF data used in the simulation
Server Data

Physical CPU Cores Idle Energy Peak Energy
16 80.5W 2735

VNF Data
Network Function CPU Required Processing Capacity

Firewall 4 600Mbps
NAT 4 900Mbps

5.2.1 Placement validation

OpenDaylight is the central administrator of the network, it obtains the global network, and
can be used to programmatically configure forwarding flow tables in the switches, thus
enabling VNF orchestration. The Firewall module can only be available on switch S3 and the
NAT module can be available on the switch S4. Different SFC strategies can be configured
by the OpenDaylight controller to satisfy the service demands of the tenant. The
experimental results are shown in Table 5 and the execution of the experiment can be
decomposed into five stages as follows:
 Test 1. The policy P1 = {Host 1, Host 2} is added, namely, no VNF modules need to be

placed. OpenDaylight automatically configures the forwarding flow table “dst = Host 2;
actions = output: S2” onto S1 based on the shortest path algorithm. The data flow is
driven to pass through switch S3 and S4, thus achieving communication between Host 1
and Host 2.

 Test 2. The policy is changed to P2 = {Host1, Host2, (Firewall)}, namely, only the
Firewall module needs to be placed. The forwarding flow tables “dst=Host2; actions =
output: Firewall”, “dst = Host2; actions = output: S2” are automatically configured to
the S3 and S4, respectively. The data flow firstly enters S3 for function processing, and
then is forwarded to Host2 through S4. The service path can be described as “S1 S3

Firewall S4 S2”.
 Test 3. The policy is changed to P3 = {Host1, Host2, (NAT)}, namely, only the NAT

module needs to be placed. The corresponding forwarding flow tables “dst = Host2;
actions = output: S4”, “dst = Host2; actions = output: NAT” are automatically
configured to the switch S3 and S4, respectively. Therefore, S3 serves as the transition
node, and S4 serves as the service node. The service path can be described as “S1 S3

S4 NAT S2”.
 Test 4. The policy is changed to P4 = {Host1, Host2, (Firewall, NAT)}, namely, the

Firewall and NAT modules need to be placed simultaneously. The forwarding flow
tables “dst = Host2; actions = output: Firewall”, “dst = Host2; actions = output: NAT”
are automatically configured to S3 and S4, and the service path can be described as “S1

S3 Firewall S4 NAT S2”.

 Test 5. The policy is changed to P5 = {Host1, Host2, (NAT, Firewall)}, namely, S3 and
S4 fail to be configured with the corresponding function modules; therefore, the service
path cannot be formed and Host1 and Host2 cannot communicate with each other.

→ →
→ →

→
→ → →

→ → → → →

4656 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

Table 5. Experimental test results
Test SFC policy Service path Delay

1 P1 = {Host1, Host2} S1.output:S2 S2.output:Host2 0.2ms

2 P2 = {Host1, Host2, (Firewall)} S1.output:S3 S3.Firewall S3.output:S4
S4.output:S2 S2.output:Host2 20.4ms

3 P3 = {Host1, Host2, (NAT)} S1.output:S3 S3.output:S4 S4.NAT
S4.output:S2 S2. output: Host2 30.6ms

4 P4= {Host1, Host2, (Firewall, NAT)} S1.output:S3 S3.Firewall S3.output:S4

S4.NAT S4.output:S2 S2.output:Host2 50.9ms

5 P5 = {Host1, Host2, (NAT, Firewall)} —

As shown in Table 5, the communication delay between Host1 and Host2 is consistent
with the theoretical analysis, and the service path is the identical to the one delivered.

5.2.2 Resource utilization analysis

We have configured that the bandwidth capacities of the upper path (S1 − S5 − S6 − S2) and
the lower path (S1 − S3 − S4 − S2) are 1.5 Gbps and 1 Gbps, respectively. The connections
need to be routed from Host1 to Host2, the real VNF module needs to be used (Firewall
available on nodes S3 and S5, NAT available on nodes S2 and S4). The 30Mbps SFC request
is repeatedly mapped between Host1 to Host2 onto the example topology. The sFlow-RT and
host-sFlow are used to obtain the utilization of nodes and links.

We compare the obtained results to three other SFC placement schemes, which have been
developed in the OpenDaylight SFC project [32]. The notations and description of different
algorithms are list in Table 6. The results of the simulations are shown in Fig. 10 and Fig. 11.
In the following, these results are discussed.

Table 6. Comparison of algorithms

Algorithm Description
Shortest-path Shortest-path selects the candidate VNFs that minimizes the service path
Round-robin Round-robin assigns the candidate VNFs using cyclic selection

Random Candidate VNFs are selected randomly
G-kSP G-kSP selects the candidate VNFs that optimizes network utilization

(a) Upper path allocation (b) Lower path allocation

Fig. 10. Comparison of path allocation

→
→ →

→ →
→ → →
→
→ →

→ → →
∞

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4657

Fig. 10 shows the bandwidth allocation on both upper and lower path. The first 20

connection requests of the G-kSP algorithm are assigned to the upper path due to its higher
resource capacity. Note that the processing resource allocation is split between nodes S5 and
S6 proportionally to their capacity. Since the network loads on the upper path, the lower path
is preferred and connection requests 20 through 50 are both service paths, with the majority
going to the lower path. For the shortest-path algorithm, the entire 50 connection requests are
always assigned to the upper path due to the higher resource capacity. For the random
algorithm, the entire 50 connection requests are randomly assigned to the upper path. For the
round-robin algorithm, the entire 50 connection requests are assigned to the upper path and
the lower path via cyclic selection. The reason that G-kSP performs better than the other
tested schemes is because our proposed scheme has a chance to iteratively improve network
utilization.

Fig. 11. Comparison of node allocation

Fig. 11 shows the flow table number on nodes. As the network reaches its capacity, G-
kSP can balance the node significantly better than the tested other schemes. The reason why
G-kSP outperforms the others could be attributed to ensuring that it consistently achieves
higher resource utilization and dynamic resource allocation across all mappings. This
ensures that the number of used nodes remains large, thus balancing the loads on the nodes
and achieving higher resource utilization. However, Random, Round-robin, and Shortest-
path achieve lower resource utilization, because during all mappings, resources are used on
clearly suboptimal paths in a static manner.

6. Conclusion
To solve the SFC placement problem in the SDN/NFV environment, an optimal model with
applicable constraints is formulated. This problem has been solved via the Integer Linear
Programming (ILP). The ILP model has limited applicability due to both resource
consumption and computational complexity. To resolve this limitation, a G-kSP placement
approach is proposed based on the two-step algorithm. Built on the top of SDN and the
advantages of the Greedy heuristic algorithm, our placement strategy can simultaneously
obtain the optimal placement of virtual network functions and routing optimal paths.

4658 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

Simulation showed that the algorithm can optimize the network resource utilization, request
acceptance rate, and running time, compared to Greedy, Tabu, GLL, and GFP algorithms,
which have already been studied for the SFC placement problem. Our trace driven on the
NetFPGA-10G demonstrates that the G-kSP can improve network utilization, compared to
Round-robin, Shortest-path, and Random schemes, which have already been developed in
the OpenDaylight SFC project. In our future work, it will be important to explore the
possibility of introducing failure-resilience by placing backup VNFs and virtual links that
can take over the traffic processing tasks from failed SFC.

References
[1] Cisco, “Cisco visual networking index: forecast and methodology, 2016-2021,” September, 2017.

Article (CrossRef Link)
[2] Bhamare D, Jain R and Samaka M, “A survey on service function chaining,” Journal of Network

& Computer Applications, vol. 75, no. 3, pp. 138-155, 2016. Article (CrossRef Link)
[3] Mechtri M, Ghribi C and Zeghlache D, “A scalable algorithm for the placement of service

function chains,” IEEE Transactions on Network & Service Management, vol. 13, no. 3, pp. 533-
546, 2016. Article (CrossRef Link)

[4] McKeown N, Anderson T and Balakrishnan H, “Openflow: enabling innovation in campus
networks,” in Proc. of ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.
69-75, 2008. Article (CrossRef Link)

[5] Mijumbi R, Serrat J and Gorricho J L, “Management and orchestration challenges in network
functions virtualization,” IEEE Communications Magazine, vol. 54, no. 1, pp. 98-105, 2016.
Article (CrossRef Link)

[6] Hmaity A, Savi M and Musumeci F, “Virtual network function placement for resilient service
chain provisioning,” in Proc. of International Workshop on Resilient Networks Design and
Modeling IEEE, pp.325-328, 2016. Article (CrossRef Link)

[7] Kim S, Park S and Kim Y, “VNF-EQ: dynamic placement of virtual network functions for
energy efficiency and QoS guarantee in NFV,” Cluster Computing, vol. 20, no. 3, pp. 1-11, 2017.
Article (CrossRef Link)

[8] Kuo T W, Liou B H and Lin C J, “Deploying chains of virtual network functions: on the relation
between link and server usage,” in Proc. of IEEE INFOCOM 2016 - the, IEEE International
Conference on Computer Communications, pp. 1-9, 2016. Article (CrossRef Link)

[9] Mijumbi R, Serrat J, and Gorricho J L, “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions,” Network Softwarization, pp. 1-9, 2015.
Article (CrossRef Link)

[10] Bhamare D, Samaka M and Erbad A, “Optimal virtual network function placement in multi-
cloud service function chaining architecture,” Computer Communications, vol. 102, no. 3, pp. 1-
16, 2017. Article (CrossRef Link)

[11] Xiong G, Hu Y X and Tian L, “A virtual service placement approach based on improved
quantum genetic algorithm,” Information and Electrical Engineering Frontier, vol. 17, no. 7, pp.
661-671, 2016. Article (CrossRef Link)

[12] Zhang Y, Beheshti N and Beliveau L, “StEERING: A software-defined networking for inline
service chaining,” in Proc. of IEEE International Conference on Network Protocols, pp. 1-10,
2014. Article (CrossRef Link)

[13] Bari M F, Chowdhury S R and Ahmed R, “On orchestrating virtual network functions,” in Proc.
of International Conference on Network and Service Management, pp. 50-56, 2015.
Article (CrossRef Link)

[14] Liu C X, Lu G Q and Tang H B, “A virtual network function viterbi algorithm adaptive
deployment method,” Journal of electronics and information technology, vol. 38, no. 11, pp.
2922-2930, 2016. Article (CrossRef Link)

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://doi.org/10.1016/j.jnca.2016.09.001
https://doi.org/10.1109/TNSM.2016.2598068
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/MCOM.2016.7378433
https://doi.org/10.1109/RNDM.2016.7608294
https://doi.org/10.1007/s10586-017-1004-3
https://doi.org/10.1109/INFOCOM.2016.7524565
https://doi.org/10.1109/NETSOFT.2015.7116120
https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1631/FITEE.1500494
https://doi.org/10.1631/FITEE.1500494
https://doi.org/10.1109/CNSM.2015.7367338
https://doi.org/10.11999/JEIT1650507

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4659

[15] Medved J, Varga R and Tkacik A, “OpenDaylight: Towards a model-driven SDN controller
architecture,” in Proc. of IEEE, International Symposium on A World of Wireless, Mobile and
Multimedia Networks, pp. 1-6, 2014. Article (CrossRef Link)

[16] Gibb G, “NetFPGA-10G Project,” March, 2015. Article (CrossRef Link)
[17] McCloghrie K, “sFlow Standard v5,” July, 2004. Article (CrossRef Link)
[18] Pirkul H and Jayaraman V, “A multi-commodity, multi-plant, capacitated facility location

problem: formulation and efficient heuristic solution,” Computers & Operations Research, vol.
25, no. 10, pp. 869-878, 1998. Article (CrossRef Link)

[19] Chiou C C, “Transshipment problems in supply chainsystems: review and extensions,” Supply
Chain, InTech, 2008. Article (CrossRef Link)

[20] Cafieri S, Hansen P and Liberti L, “Improving heuristics for network modularity maximization
using an exact algorithm,” Discrete Applied Mathematics, vol. 163, no. 163, pp. 65-72, 2014.
Article (CrossRef Link)

[21] Rost M and Schmid S, “Service chain and virtual network embeddings: approximations using
randomized rounding,” 2016. Article (CrossRef Link)

[22] Schmid S, “Online admission control and embedding of service chains,” Post-Proceedings of the,
International Colloquium on Structural Information and Communication Complexity, Springer-
Verlag New York, Inc, pp. 104-118, 2015. Article (CrossRef Link)

[23] Moens H and Turck F D, “VNF-P: A model for efficient placement of virtualized network
functions,” in Proc. of International Conference on Network and Service Management, IEEE, pp.
418-423, 2014. Article (CrossRef Link)

[24] Yu M, Yi Y and Rexford J, “Rethinking virtual network embedding: substrate support for path
splitting and migration,” in Proc. of ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 17-29, 2008. Article (CrossRef Link)

[25] Zegura E W, Calvert K L and Bhattacharjee S, “How to model an internetwork,” in Proc. of
Proceedings of IEEE Infocom, pp. 594-596, 1996. Article (CrossRef Link)

[26] Orlowski S, Wessäly R and Pióro M, “SNDlib 1.0—survivable network design library,”
Networks, vol. 55, no. 3, pp. 276-286, 2010. Article (CrossRef Link)

[27] Mijumbi R, Serrat J and Gorricho J L, “Self-managed resources in network virtualisation
environments,” in Proc. of Ifip/ieee International Symposium on Integrated Network
Management, pp. 1099-1106, 2015. Article (CrossRef Link)

[28] Duan T, Lan J L and Cheng G Z, “Metafunction-based SDN Function combination mechanism,”
Journal on Communications, vol. 36, no. 5, pp. 156-166, 2015. Article (CrossRef Link)

[29] Gibb G, Zeng H and Mckeown N, “Outsourcing network functionality,” in Proc. of The
Workshop on Hot Topics in Software Defined Networks, pp. 73-78, 2012. Article (CrossRef Link)

[30] T Benson, “Network traffic characteristics of data centers in the wild,” in Proc. of ACM IMC’10,
pp 267-280. Article (CrossRef Link)

[31] Shin S, Porras P and Yegneswaran V, “Fresco: modular composable security services for
software-defined networks,” in Proc. of Proceedings of Network & Distributed Security
Symposium, 2013. Article (CrossRef Link)

[32] OpenDaylight Project, “OpenDaylight service function chaining (SFC): beryllium feature
integration system test,” 2015. Article (CrossRef Link)

https://doi.org/10.1109/WoWMoM.2014.6918985
https://github.com/NetFPGA/NetFPGA-public/wiki/%20Home_NetFPGA-10G.
http://sflow.org/sflow_version_5.txt
https://doi.org/10.1016/S0305-0548(97)00096-8
https://doi.org/10.5772/5353%C2%A0
https://doi.org/10.1016/j.dam.2012.03.030
https://www.researchgate.net/publication/301876046_Service_Chain_and_Virtual_Network_Embeddings_Approximations_using_Randomized_Rounding
https://doi.org/10.1007/978-3-319-25258-2_8
https://www.researchgate.net/publication/309901007_VNF-P_A_model_for_efficient_placement_of_virtualized_network_functions
https://doi.org/10.1145/1355734.1355737
https://doi.org/10.1109/INFCOM.1996.493353
https://www.researchgate.net/publication/241677716_SNDlib_10Survivable_Network_Design_Library?ev=prf_cit
https://doi.org/10.1109/INM.2015.7140439
https://doi.org/10.11959/j.issn.1000-436x.2015178
https://doi.org/10.1145/2342441.2342457
https://irtf.org/raim-2015-papers/raim-2015-paper41.pdf
http://www.csl.sri.com/users/vinod/papers/fresco.pdf
https://wiki.opendaylight.org/view/OpenDaylight_Service_Function_Chaining(SFC):Beryllium_Feature_Integration_System_Test

4660 Yicen Liu et al: A Dynamic Placement Mechanism of Service
Function Chaining Based on Software-defined Networking

Yicen Liu received his Master's degree in communication and information system from
Shijiazhuang Campus of Army Engineering University, Shijiazhuang, China, in 2018. He is
currently a Ph. D candidate, with Information Engineering Department, Shijiazhuang
Campus of Army Engineering University, Shijiazhuang, China. His current interest is
software-defined service and VNF intelligent orchestration technology.

Yu Lu received his Ph. D degree from the Beijing University of Aeronautics and
Astronautics, Beijing, China. He is currently a full professor, with Information Engineering
Department, Shijiazhuang Campus of Army Engineering University. His current interests
are in the area of network security control, software-defined security.

Xingkai Chen received his Master's degree in communication and information system
from Shijiazhuang Campus of Army Engineering University, Shijiazhuang, China, in 2013.
He is currently a Ph. D candidate, with Information Engineering Department, Shijiazhuang
campus of Army Engineering University. His current interest is the key technologies of the
future network architecture.

Xi Li received his Ph. D degree in computer science technology from Shijiazhuang
Campus of Army Engineering University, Shijiazhuang, China, in 2018. He is currently a
lecturer, with Information Engineering Department, Shijiazhuang Campus of Army
Engineering University. His current interest is network security and information technology
of equipment support.

Wenxin Qiao received his Master's degree in software engineering from Shijiazhuang
Campus of Army Engineering University, Shijiazhuang, China, in 2016. She is currently a
Ph. D student, with Information Engineering Department, Shijiazhuang Campus of Army
Engineering University. Her current interest is the key technologies of network
virtualization reliability.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4661

Liyun Chen received his Ph. D degree in computer science technology from Shijiazhuang
Campus of Army Engineering University, Shijiazhuang, China, in 2011. He is currently a
full professor, with Information Engineering Department, Shijiazhuang Campus of Army
Engineering University. His current interests are in the area of artificial intelligence, and
deep learning.

