• Title/Summary/Keyword: Camera constant

Search Result 180, Processing Time 0.03 seconds

Variation of Camera Constant and Image Rotation in HU-125C Electron Microscope (HU-125C 전자현미경에 있어서 카메라 상수의 변화 및 상의 회전에 대한 조사)

  • Choi, Ju;Ye, Gil-Chon
    • Applied Microscopy
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1974
  • Variations of camera constant due to the change of the lens current were examined for Hitachi HU-125C electron microscope. It was shown that the variation in specimen height had a marked effect on the change of camera constant. Also the rotation of the image from the diffraction pattern was determined by using a test crystal. Suggestions were given for improving practical operation of electron microscope in the work of thin foils.

  • PDF

Accuracy Improvement of Lattice Parameters Measured from Electron Diffraction Data (전자회절을 이용한 격자상수의 측정 정확도 향상)

  • Lee, Sang-Gil;Song, Kyung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.75-79
    • /
    • 2011
  • For quantitative analysis of nano-crystal structure, we reported the accuracy improvement method of lattice parameters measured from electron diffraction. For calculation of Au lattice parameters used as a standard crystal structure, it was considered two different acquisition methods (detector and enegy-filter) and three different calculation methods (conventional, least-square and regression fit). As a result, the measurement reliability could be enhanced by using CCD camera which gives higher performance, while energy-filtering did not affect the improvement the camera constant accuracy. Also, the accuracy of lattice parameters could be improved up to $10^{-4}$ order by regression fitting with correction formula. Finally, it is expected that the combination of regression fitting and intensity extraction from energy-filtered precession electron diffraction gives a solution of quantitative structure analysis for unknown nano-crystals.

Disparity compensation for vergence control of active stereo camera (배경시차 보정을 이용한 스테레오 시각장치의 주시각제어)

  • 박순용;이용범;진성일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.67-76
    • /
    • 1997
  • This ppaer describes the development of the stereo camera system(KASS-1) and the control of the vergence of the stereo camera to fix a gaze on a moving object in real-time using a stereo disparity. The motion energy and the stereo disparity of a moving object from the stereo image are used to control the vergence of stereo camera to keep stereo disparity constant. The disparity from the rotating stereo camera is introduced not only from the moving object but also from the background. In this paper, the background disparity error due to the vergence control of the stereo camera is eliminated by compensation algoithm, and the vergence of steereo camera system can be controlled continuously using the disparity of a moving object only.

  • PDF

PRACTICAL WAYS TO CALCULATE CAMERA LENS DISTORTION FOR REAL-TIME CAMERA CALIBRATION

  • Park, Seong-Woo;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, we address practical methods for calculating camera lens distortion for real time applications. Although the lens distortion problem can be easily ignored for constant-parameter lenses, in the field of real-time camera calibrations, for zoom lenses a large number of calculations are needed to calculate the distortion. However, if the distortion can be calculated independently of the other camera parameter, we can easily calibrate a camera without the need for a large number of calculations. Based on Tsai's camera model, we propose two different methods for calculating lens distortion. These methods are so simple and require so few calculations that the lens distortion can be rapidly calculated even in real-time applications. The first method is to refer to the focal length - lens distortion Look Up Table(LUT), which is constructed in the initialization process. The second method is to use the relationship between the feature points found in the image. Experiments were carried out for both methods, results of which show that the proposed methods are favorably comparable in performance with non-real full optimization method.

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

CHARACTERISTICS AND PERFORMANCE OF A FAST CCD CAMERA: DALSTA IM30P

  • SEO YOUNG-MIN;PARK KI-WOONG;CHAE JONGCRUL
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • We have been developing a solar observing system based on a fast CCD camera 1M30P made by the DALSA company. Here we examine and present the characteristics and performance of the camera. For this we have analyzed a number of images of a flat wall illuminated by a constant light source. As a result we found that in the default operating mode 1) the mean bias level is 49 ADU/pix, 2) the mean dark current is about 8 ADU /s/pix, 3) the readout noise is 1.3 ADU, and 4) the gain is about 42 electrons/ ADU. The CCD detector is found to have a linearity with a deviation smaller than $6\%$, and a uniform sensitivity better than $1\%$. These parameters will be used as basic inputs in the analysis of data to be taken by the camera.

Analysis of Combustion and Flame Propagation Characteristics of LPG and Gasoline Fuels by Laser Deflection Method

  • Lee, Ki-Hyung;Lee, Chang-Sik;Ryu, Jea-Duk;Park, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.935-941
    • /
    • 2002
  • This work is to investigate the combustion characteristics and flame propagation of the LPG (liquified petroleum gas) and gasoline fuel. In order to characterize the combustion processes of the fuels, the flame propagation and combustion characteristics were investigated by using a constant volume combustion chamber The flame propagation of both LPG and gasoline fuels was investigated by the laser deflection method and the high-speed Schlieren photography. The result of laser deflection method show that the error of measured flame propagation speed by laser method is less than 5% compared with the result of high-speed camera. The flame propagation speed of the fuel is increased with the decrease of initial pressure and the increase of initial temperature in the constant volume chamber. The results also show that the equivalence ratio has a grate effect on the flame speed, combustion pressure and the combustion duration of the fuel-air mixture.

A Study of the Behavior of Liquid Phase Spray Considering Critical Condition of the Fuel (연료의 임계조건을 고려한 디젤 액상분무거동에 관한 연구)

  • Park, Jong-Sang;Kim, Si-Pom;Chung, Sung-Sik;Ha, Jong-Yul;Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.467-472
    • /
    • 2007
  • In this study the penetration distance of liquid phase fuel(i.e. liquid phsae length) was investigated in evaporative field. An exciplex fluorescence method was applied to the evaporative fuel spray to measure and investigate both the liquid and the vapor phase of the injected spray. For accurate investigation, images of the liquid and vapor phase regions were recorded using a 35mm still camera and CCD camera, respectively. Liquid fuel was injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant-volume chamber under high pressure and temperature in order to visualize the spray phenomena. Experimental results indicate that the liquid phase length decreased down to a certain constant value in accordance with increase in the ambient gas density and temperature. The constant value, about 40mm in this study the, is reached when the ambient density and temperature of the used fuel exceed critical condition.

SATELLITE ORBIT AND ATTITUDE MODELING FOR GEOMETRIC CORRECTION OF LINEAR PUSHBROOM IMAGES

  • Park, Myung-Jin;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.543-547
    • /
    • 2002
  • In this paper, we introduce a more improved camera modeling method for linear pushbroom images than the method proposed by Orun and Natarajan(ON). ON model shows an accuracy of within 1 pixel if more than 10 ground control points(GCPs) are provided. In general, there is high correlation between platform position and attitude parameters but ON model ignores attitude variation in order to overcome such correlation. We propose a new method that obtains an optimal solution set of parameters without ignoring the attitude variation. We first assume that attitude parameters are constant and estimate platform position's. Then we estimate platform attitude parameters using the values of estimated position parameters. As a result, we can set up an accurate camera model for a linear pushbroom satellite scene. In particular, we can apply the camera model to its surrounding scenes because our model provide sufficient information on satellite's position and attitude not only for a single scene but also for a whole imaging segment. We tested on two images: one with a pixel size 6.6m$\times$6.6m acquired from EOC(Electro Optical Camera), and the other with a pixel size 10m$\times$l0m acquired from SPOT. Our camera model procedures were applied to the images and gave satisfying results. We had obtained the root mean square errors of 0.5 pixel and 0.3 pixel with 25 GCPs and 23 GCPs, respectively.

  • PDF