• 제목/요약/키워드: Camera Model Identification

검색결과 46건 처리시간 0.024초

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

Synthetic data augmentation for pixel-wise steel fatigue crack identification using fully convolutional networks

  • Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.237-250
    • /
    • 2022
  • Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권2호
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.

로보트 아크용접에서 시각인식장치를 이용한 용접선의 추적

  • 손영탁;김재선;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.550-555
    • /
    • 1993
  • The aim of this paper is to present the development of visual seam tracking system equipped with visual range finder. The visual range finder, which consists of a CCD camera and a diode laser system with line generating optics, developed to recognize the types of weld joints and detect the location of weld joints. In practical applications, however, images of the weld joints are often degraded due to spatters, are flares, surface specularity, and welding smoke. To overcome the problem, this paper proposes a syntactic approach which is a class of artificial intelligence techniques. In the approach, the type of weld joint is inferred based upon the production rules which are linguiques grammars consisting of a set of line and junction primitives of laser strip image projected on weld joint. The production rules eliminate several noisy primitives to create new primitives through the merging process of primitives. After the recognition of weld joint, arc welding is started and the location of weld joints is repeatedly detected using a spring model-based template matching in which the template model is a by-product of the recognition process of weld joint. To show the effectiveness of the proposed approach a series of experiments-identification and robotic tracking-are conducted for four different types of weld joints.

  • PDF

모바일 디스플레이에서 TS 알고리즘을 이용한 실시간 얼굴영역 검출 (Real Time Face Detection with TS Algorithm in Mobile Display)

  • 이용환;김영섭;이상범;강정원;박진양
    • 반도체디스플레이기술학회지
    • /
    • 제4권1호
    • /
    • pp.61-64
    • /
    • 2005
  • This study presents a new algorithm to detect the facial feature in a color image entered from the mobile device with complex backgrounds and undefined distance between camera's location and the face. Since skin color model with Hough transformation spent approximately 90$\%$ of running time to extract the fitting ellipse for detection of the facial feature, we have changed the approach to the simple geometric vector operation, called a TS(Triangle-Square) transformation. As the experimental results, this gives benefit of reduced run time. We have similar ratio of face detection to other methods with fast speed enough to be used on real-time identification system in mobile environments.

  • PDF

Building Control Box Attached Monitor based Color Grid Recognition Methods for User Access Authentication

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Khudaybergenov, Timur;Kim, Min Soo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권2호
    • /
    • pp.1-7
    • /
    • 2020
  • The secure access the lighting, Heating, ventilation, and air conditioning (HVAC), fire safety, and security control boxes of building facilities is the primary objective of future smart buildings. This paper proposes an authorized user access to the electrical, lighting, fire safety, and security control boxes in the smart building, by using color grid coded optical camera communication (OCC) with face recognition Technologies. The existing CCTV subsystem can be used as the face recognition security subsystem for the proposed approach. At the same time a smart device attached camera can used as an OCC receiver of color grid code for user access authentication data sent by the control boxes to proceed authorization. This proposed approach allows increasing an authorization control reliability and highly secured authentication on accessing building facility infrastructure. The result of color grid code sequence received by the unauthorized person and his face identification allows getting good results in security and gaining effectiveness of accessing building facility infrastructure. The proposed concept uses the encoded user access authentication information through control box monitor and the smart device application which detect and decode the color grid coded informations combinations and then send user through the smart building network to building management system for authentication verification in combination with the facial features that gives a high protection level. The proposed concept is implemented on testbed model and experiment results verified for the secured user authentication in real-time.

고해상도 단일 위성영상으로부터 건물높이값 추출 (Calculation of Buildlng Heights from a Single Satellite Image)

  • 이병환;김정희;박경환
    • Spatial Information Research
    • /
    • 제7권1호
    • /
    • pp.89-101
    • /
    • 1999
  • 이 논문은 단일 영상(single image)이며 흑백영상인 KVR-1000카메라 시스템 위성영상(공간해상도 2m)으로 부터 건축물의 그림자 길이를 측정하여 대상물체의 높이를 획득하는 방법을 제시하였다. 대상물체에 의해 생긴 그림자의 명암도(intensity)를 이용하여 그림자영역을 추출하고 그 길이를 재어 건물 높이 값을 계산하였다. 본 연구에서는 다음의 두 가지 방법을 사용하였다. 첫 번째 방법은 정비례 방정식을 이용하여 이미 알고 있는 건물 높이로부터 미지의 건물 높이를 계산하는 것이고 두 번째 방법은 태양고도각과 그림자 길이로부터 건물 높이 값을 직접 계산하는 것이다. 그 결과 첫 번째 방법을 이용한 경우 RMS 오차는 1.70m 이었고 두 번째 방법을 사용한 경우는 그 오차가 1.75m였다. 화소재배열(resampling)을 하여 재 계산된 그림자 길이를 사용했을 때는 각각 1.17m 및 1.16m로 현저히 줄었다. 한판 경사지에 생긴 그림자 길이의 보정은 단일영상만으로는 할 수 없으며 이로 인한 건물 높이 값의 오차는 본 대상지역에서 ±250m로 나타났다.

  • PDF

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

소형위성 광학탑재체의 영상안정화를 위한 초점면부 보정장치의 실험적 모델링에 관한 연구 (On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite)

  • 강명수;황재혁;배재성;박진호
    • 한국항공우주학회지
    • /
    • 제43권8호
    • /
    • pp.757-764
    • /
    • 2015
  • 본 논문에서는 소형 지구관측 위성의 광학카메라에 들어가는 미소진동을 보상하기 위한 초점면부 보정장치 시스템의 실험적 모델링을 수행하였다. 미소진동 외란을 보상하는 초점면부 보정장치의 구동기로 PZT 압전작동기를 적용하였다. 압전작동기는 히스테리시스 고유 특성을 갖게 되므로 보정장치 시스템의 정확한 수학적 모델링을 얻는데 어려움이 있다. 따라서 본 연구에서는 보정장치 시스템을 2차 선형시스템으로 가정하고 MATLAB의 시스템 식별 툴박스(System Identification Toolbox)를 이용하여 실험적으로 모델링을 수행하였다. 외란의 주파수 범위인 0~50Hz에서 응답 오차 10%를 만족하기 위해 단일 선형 모델로는 불가능하며 총 4개의 선형 모델이 필요하다. 각각의 모델은 0~50Hz 입력범위를 4개의 구간으로 나눈 영역에서 실제 동역학을 잘 표현 하고 있다. 미소진동 외란의 보상은 입력주파수에 따라 모델 스위칭 기법을 적용한 초점면부 보정장치 제어를 통해 이루어진다.