• Title/Summary/Keyword: Camera Configuration

Search Result 145, Processing Time 0.019 seconds

Study on 2 types of Liquid Lens control system used for the autofocus (자동초점에 사용되는 두 가지 Liquid Lens제어에 관한 연구)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1493-1498
    • /
    • 2015
  • The autofocus system is automatically to drive the focus. It is very important to computer vision system. In the case of a compact camera, the actuator technology is used for auto-focus in mass production. the position sensor is required, the circuit configuration and easy method is widely used in VCM, compared to the stability of the drive size and the noise is a big stepping motor type, size has a piezo system having a humidity problem and the small leaded vulnerability. In addition, there is a liquid lens system, the advantages of low power in a compact structure but also a structure with proven quality and reliability and features required pressure. In this paper, we implement two control systems that can control the actuator as a liquid range of VCM using a sharpness of the image acquired by the image sensor automatically initiates 5Mpixel class was the implementation verification of focusing.

Smart Device based ECG Sensing IoT Applications (스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구)

  • Mariappan, Vinayagam;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • Internet of things (IoT) is revolutionizing in the patient-Centered medical monitoring and management by authorizing the Smartphone application and data analysis with medical centers. The network connectivity is basic requirement to collect the observed human beings' health information from Smartphone to monitor the health from IoT medical devices in personal healthcare. The IoT environment built in Smartphone is very effective and does not demand infrastructure. This paper presents the smart phone deployed personal IoT architecture for Non-Invasive ECG Capturing. The adaptable IoT medical device cum Gateway is used for personal healthcare with big data storage on cloud configuration. In this approach, the Smartphone camera based imaging technique used to extract the personal ECG waveform and forward it to the cloud based big data storage connectivity using IoT architecture. Elaborated algorithm allows for efficient ECG registration directly from face image captured from Smartphone or Tablet camera. The profound technique may have an exceptional value in monitoring personal healthcare after adequate enhancements are introduced.

A Study on the Effect Analysis Influenced on the Advanced System of Moving Object (이동물체가 정밀 시스템에 미치는 영항분석에 관한 연구)

  • Shin, Hyeon-Jae;Kim, Soo-In;Choi, In-Ho;Shon, Young-Woo;An, Young-Hwan;Kim, Dae-Wook;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • In this paper, we analyzed the mr detection and the stability of the object tracking system by an adaptive stereo object hacking using region-based MAD(Mean Absolute Difference) algorithm and the modified PID(Proportional Integral Derivative)-based pan/tilt controller. That is, in the proposed system, the location coordinates of the target object in the right and left images are extracted from the sequential stereo input image by applying a region-based MAD algorithm and the configuration parameter of the stereo camera, and then these values could effectively control to pan/tilt of the stereo camera under the noisy circumstances through the modified PID controller. Accordingly, an adaptive control effect of a moving object can be analyzed through the advanced system with the proposed 3D robot vision, in which the possibility of real-time implementation of the robot vision system is also confirmed.

Smart Phone Picture Recognition Algorithm Using Electronic Maps of Architecture Configuration (건물 배치 전자도면을 이용한 모바일 폰의 피사체 인지 방법)

  • Yim, Jae-Geol;Joo, Jae-Hun;Lee, Gye-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2012
  • As the techniques of electronic and information are advancing, the computing power of a smart phone is becoming more powerful and the storage capacity of a smart phone is becoming larger. As the result, various new useful services are becoming available on smart phones. The context-aware service and mobile augmented reality have recently been the most popular research topics. For those newly developed services, identifying the object in the picture taken by the camera on the phone performs an extremely important role. So, many researches of identifying pictures have been published and most of them are based on the time consuming image recognition techniques. On the contrary, this paper introduces a very fast and effective method of identifying the objects on the photo making use of the sensor data obtained from the smart phone and electronic maps. Our method estimates the line of sight of the camera with the location and orientation information provided by the smart phone. Then it finds any element of the map which intersects the line of sight. By investigating those intersecting elements, our method identifies the objects on the photo.

Hardware Configuration and Paradox Measurement for the Determination of Arrow Trajectory (화살의 이동궤적을 위한 하드웨어 구성 및 패러독스 측정)

  • Jeong, Yeong-Sang;Yu, Jung-Won;Lee, Han-Soo;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.459-464
    • /
    • 2012
  • The point of impact, the shot group, and the flight traces depend on the combination of unique features which decide moving traces of the arrow (paradox of the archer, length of the arrow shaft, weight, angle of the feather, and spline of the arrow shaft). The more dense the impact points in the shot group and the earlier elimination of paradox of the archer, the higher assessment is given for the product. However, there is no way to objectively assess the efficiency and quality of the arrow, and there is no numeric data to be used as the basis for comparison with other products. Although capturing the images of flying arrow using a high-speed motion picture camera is possible, we are limited to observation from specific view angle only. Hence, the criteria for efficiency and quality assessment are mostly based on subjective opinions of experts or hunters, or review on consumers' remarks. In this paper, we propose a hardware composition that are based on three detection frames consisting of line lasers and photo diode arrays without the high-speed motion picture camera. Predicated on measured coordinates data, a nobel method for the archer's paradox measurement, a key parameter that determine the arrow's trajectory, and corresponding numerical analysis model is proposed.

Sampling-based Control of SAR System Mounted on A Simple Manipulator (간단한 기구부와 결합한 공간증강현실 시스템의 샘플 기반 제어 방법)

  • Lee, Ahyun;Lee, Joo-Ho;Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.356-367
    • /
    • 2014
  • A robotic sapatial augmented reality (RSAR) system, which combines robotic components with projector-based AR technique, is unique in its ability to expand the user interaction area by dynamically changing the position and orientation of a projector-camera unit (PCU). For a moving PCU mounted on a conventional robotic device, we can compute its extrinsic parameters using a robot kinematics method assuming a link and joint geometry is available. In a RSAR system based on user-created robot (UCR), however, it is difficult to calibrate or measure the geometric configuration, which limits to apply a conventional kinematics method. In this paper, we propose a data-driven kinematics control method for a UCR-based RSAR system. The proposed method utilized a pre-sampled data set of camera calibration acquired at sufficient instances of kinematics configurations in fixed joint domains. Then, the sampled set is compactly represented as a set of B-spline surfaces. The proposed method have merits in two folds. First, it does not require any kinematics model such as a link length or joint orientation. Secondly, the computation is simple since it just evaluates a several polynomials rather than relying on Jacobian computation. We describe the proposed method and demonstrates the results for an experimental RSAR system with a PCU on a simple pan-tilt arm.

Experimental Study on Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle (비쥬얼 서보 자율무인잠수정의 수중 도킹에 관한 실험적 연구)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Ji-Hong;Kim, Sea-Moon;Hong, Young-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.89-93
    • /
    • 2003
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), the ocean engineering branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) to test underwater docking. This paper introduces the AUV model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. A small long baseline acoustic positioning system was developed to monitor and record the AUV's position for the experiment in the Ocean Engineering Basin of KRISO, KORDI. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the docking test of the AUV in near future.

  • PDF

Study on image-based flock density evaluation of broiler chicks (영상기반 축사 내 육계 검출 및 밀집도 평가 연구)

  • Lee, Dae-Hyun;Kim, Ae-Kyung;Choi, Chang-Hyun;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.373-379
    • /
    • 2019
  • In this study, image-based flock monitoring and density evaluation were conducted for broiler chicks welfare. Image data were captured by using a mono camera and region of broiler chicks in the image was detected using converting to HSV color model, thresholding, and clustering with filtering. The results show that region detection was performed with 5% relative error and 0.81 IoU on average. The detected region was corrected to the actual region by projection into ground using coordinate transformation between camera and real-world. The flock density of broiler chicks was estimated using the corrected actual region, and it was observed with an average of 80%. The developed algorithm can be applied to the broiler chicks house through enhancing accuracy of region detection and low-cost system configuration.

A Study of a Heat Flux Mapping Procedure to Overcome the Limitation of Heat Flux Gauges in Fire Tests (화재실험시 열유속 센서 사용의 단점을 보완한 Heat Flux Mapping Procedure에 관한 연구)

  • Choi, Keum-Ran
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.171-179
    • /
    • 2005
  • It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full-scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full-scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment was performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

Recognition of the 3-D motion of a human arm with HIGIPS

  • Yao, Feng-Hui;Tamaki, Akikazu;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1724-1729
    • /
    • 1991
  • This paper gives an overview of HIGIPS design concepts and prototype HIGIPS configuration, and discusses its application to recognition of the 3-D motion of a human arm. HIGIPS which employs the combination of pipeline architecture and multiprocessor architecture, is a high-speed, high-performance and low cost N * M multimicroprocessor parallel machine, where N is the number of pipeline stages and M is the number of processors in each stage. The algorithm to recognize the motion of a human arm with a single TV camera was developed on personal computer (NEC PC9801 series). As a constraint condition, some simple ring marks are used. Each joint of the arm is attached with a ring mark to obtain its centroid position when the arm moves. These centroid positions in the three-dimensional space are linked at each of the successive pictures of the moving arm to recover its overall motion. This algorithm takes about 2 seconds to process one image frame on the general-purpose personal computer. This paper mainly discuses how to partition this algorithm and execute on HIGIPS, and shows the speed up. From this application, it is clear that HIGIPS is an efficient machine for image processing and recognizing.

  • PDF