• Title/Summary/Keyword: Cam Shaft

Search Result 52, Processing Time 0.026 seconds

The Forging Analysis of S/CAM Shaft to the Drum Brake (드럼브레이크 S/CAM 샤프트 단조 해석)

  • Kim, Mi-Ae;Sung, Back-Sub;Cha, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1113-1118
    • /
    • 2008
  • In the hot forging process, The forging defects that are caused by metal were strain, temperate, and inclusion. In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering temperature affected and material behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

  • PDF

The Experimental and Basic Study on Torsional Vibration of Horizontal Rotating Shaft using a Laser Measuring Equipment (레이저 계측기를 이용한 축의 비틀림 진동에 관한 실험적 기초 연구)

  • Park, I.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the nose of cam in the automobile engine was modelled into circular disk to analyze the torsional vibration of the cam shaft. The distance between disks was fixed, but the diameter of disks was changed. The torsional vibration of the cam shaft was studied experimentally by the motion of the modelled disk with changing the disk diameter. And the sizes of the modelled disk were selected not to show the natural frequencies over all the experimental ranges. The torsional vibration meter used in this study has a laser system with non-contact measurement method, which can measure both torsional angular vibration velocity and torsional angular vibration displacement simultaneously. The Experimental analysis shows that the characteristics of the torsional vibration in the horizontal rotating shaft can be considerably affected by the arrangement of the modelled disks.

  • PDF

Cutting Characteristic of SNCM420H steel for Ship Engine Supply Unit (선박엔진의 Supply Unit용 SNCM420H의 절삭특성)

  • Choi, Won-Sik;Sung, Bong-Soo;Kang, Chang-Won;Mun, Hee-Joon;Kwon, Ju-Ri
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.631-636
    • /
    • 2010
  • SNCM420 steel is one of the cam shaft materials which are used in the supply unit for ship engine cam shaft. In this study the assessment of cutting behavior was conducted for the SNCM 420 steel and SM45C steel with various cutting conditions as depth of cut 0.5, 1.0, 1.5, 2.0mm and feed rate 0.1~0.3m/rev. The controlled chip was produced in feed rate 0.2, depth of cut 1.0 for SNCM420 and feed rate 0.2, depth of cut 2.0 for SM45C. There is no difference cutting force between SM45C and SNCM420 steels.

The Soundness Evaluation of Cam Shaft Moulding for the Commercial Vehicle Brake System (상용차 브레이크 캠샤프트 성형의 건전성 평가)

  • Cha, Yong-Hun;Sung, Back-Sub;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.60-66
    • /
    • 2011
  • In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering effective plastic strain and temperature affected behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

Characteristics of Flow Coefficients in an Engine Cylinder Head with a Quasi-steady Flow Condition by Continuous Variation of the Valve Lift (밸브 양정의 연속 변화에 의한 준정상 유동 조건에서의 엔진 실린더헤드 유량계수 특성)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.22-27
    • /
    • 2010
  • Flow Coefficients of intake port in an engine cylinder head were measured by a newly designed flow rig. In measuring the flow coefficient with traditional method, the valve lift was manually varied by technician with adjusting a micrometer which is directly connected to the intake valve of the cylinder head. The cam shaft of the cylinder head is directly rotated by a step motor and the valve lift was automatically varied with cam shaft profile in the newly designed flow rig. The measurement of the flow coefficient was automated by rotating the cam shaft with the step motor. Automatic measurement of the flow coefficient could be safely measured by separating a technician from the noise and vibration of the traditional flow rig. Also, the automatic measurement of the flow coefficient reduce the measurement time and provide meaningful statistical data.

An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System (직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구)

  • Cho, Myung-Rae;Kim, Hyung-Jun;Moon, Tae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

A Study on Wear Characteristics of Surface-Hardened SM53C Steel by High Frequency Induction (표면경화된 SM53C강의 마모특성에 관한 연구)

  • Park, Won-Jo;Song, Tae-Hoon;Hur, Chung-Weon;Song, Hong-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • The abnormal wears such as unfair-wear and early-wear happen in the earn shaft surface of automobiles. These abnormal wears make efficiency of engines decrease and threaten safety of automobiles. The wear characteristics of the cam shaft is very important for the automobile safety. The cam shaft is surface-hardened by the high frequency induction. In this study, we investigated the wear characteristics of the hardened surface with a SM53C steel. The wear characteristics is examined according to the hardened depth and the amount of load.