• Title/Summary/Keyword: Calorimetry

Search Result 1,165, Processing Time 0.031 seconds

Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat (자동차 시트용 탄소섬유 발열체의 전기적 및 저항 발열 특성)

  • Choi, Kyeong-Eun;Park, Chan-Hee;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this paper, the electrical and resistance heating properties of carbon fiber heating elements with different electroless Ni-P plating times for car seat were studied. The specific resistance and specific heat of the carbon fibers were determined using 4-point probe method and differential scanning calorimetry (DSC), respectively. The surface morphology and temperature of carbon fibers were measured by scanning electron microscope (SEM) and thermo-graphic camera, respectively. From experimental results, the nickel layer thickness and surface temperature of carbon fibers increased with increasing the plating time. However, the specific heat and specific resistance decreased with respect to the increased plating time. In conclusion, the electroless Ni-P plating could improve the resistance heating and electrical properties of carbon fiber heating elements for car seat.

The Precipitation Phenomena of Al-2.1Li-2.9Cu alloy by Differential Scanning Calorimetry(III) - Aging behaviors - (열분석법에 의한 Al-2.1Li-2.9Cu합금의 석출현상(II) - 시효거동 -)

  • Park, Tae-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 1997
  • A study was performed to examine the aging behaviors of Al-2.1Li-2.9Cu alloy by differential scanning calorimetry and transmission electron microscopy. DSC measurements were conducted over the temperature range of $25{\sim}550^{\circ}C$ at a heating rate of $5^{\circ}C$/min. for the specimens aged at 130, 160, $190^{\circ}C$ and $220^{\circ}C$ for various times after solution treatment at $540^{\circ}C$ for 30 minutes. The peaks due to the formation of G.P.zone were not detected in the specimens aged at 130 and $160^{\circ}C$, but those at 190 and $220^{\circ}C$ appeared in DSC curves. The heat absorption due to the dissolution of ${\delta}^{\prime}$ phase was increased with increasing aging time at $130^{\circ}C$ aging. In contrast, those values for the specimens aged at 160 and $190^{\circ}C$ were initially increased and inversely decreased at the transition time of 72 and 1 hour, respectively. The heat evolution due to the formation of $T_1$ phase was nearly unchanged at $130^{\circ}C$ aging, but at $160^{\circ}C$ and $190^{\circ}C$ aging, drastically decreased after the transition time. It can be considered that the increase of $T_1$ phase results in the decrease of ${\delta}^{\prime}$ phase when aging time is longer than the transition time. The hardness of the specimen aged at $190^{\circ}C$ is initially higher compared with that at $160^{\circ}C$, however, the peak hardness shows the lower value than that at $160^{\circ}C$.

  • PDF

Physicochemical Properties of Starches from Flavored Glutinous Rice Varieties (향미찹쌀전분의 이화학적 특성비교)

  • 최영희;김광호;강미영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.765-769
    • /
    • 2001
  • Starches of flavored glutinous rice were analyzed by using scanning electron microscope (SEM) and differential scanning calorimetry (DSC) and tested on the starch granule susceptibility to 15% H$_2$SO$_4$, glucoamylase and $\alpha$-amylase. The shape of starch granules form flavored glutinous rice varieties was polygonal and the size was 4~6 $\mu$m in diameter. According to DSC, glutinous rice starch showed onset temperature (T$_{o}$) range 59.8~62.5$^{\circ}C$ and KR92021-B-B-42-3-B and KR92021-B-B-165-1-B showed higher enthalpy ($\Delta$H) on gelatinization than others. The starches from KR92021-B-B-5-2-B and KR92021-B-B-42-3-B showed lower hydrolysis rate using 15% H$_2$SO$_4$ than KR92021-B-B-165-1-B. KR92021-B-B-5-2-B showed higher degree of hydrolysis of glucoamylase and $\alpha$-amylase than the others.

  • PDF

Synthesis and Characterization of Wholly Aromatic Polyester Liquid Crystalline Thermosets (전방향족 폴리에스터 열경화성 액정의 합성과 특성)

  • Moon, Hyun-Gon;Jung, Myung-Sup;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • We prepared a series of aromatic liquid crystals (LCs) based on wholly aromatic ester units with the reactive end group methyl maleimide by means of melt condensation method, and the resulting LCs were thermally crosslinked to produce liquid crystalline thermoset (LCT) films. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), and polarizing optical microscopy (POM) with a hot stage. The glass transition temperature ($T_g$) and coefficient of thermal expansion are strongly affected by the mesogen units in their main chain structures. The $p$-substituted biphenyl LC was found to have the highest thermal property value.

Preparation and Evaluation of Temperature Sensitive Liposomes Containing Adriamycin and Cytarabine

  • Kim, Chong-Kook;Lee, Suk-Kyeong;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.129-133
    • /
    • 1993
  • Temperature sensitive liposomes(TSL) containing adriamycin (ADM) and cytarabine (Ara-C) were prepared. ADM and Ara-C were selected as model compounds of amphiphilic and hydrophilic drug, respectively. Encapsulation efficiency of ADM entrapped into TSL was about twice greater than that of Ara-C. It might be due to different polarity of the drug, Lipid compositions of TSL had no effect on the encapsulation efficiency of drugs. Thermal behavior of TSL using a differential scanning calorimetry (DSC) was also investigated. Phase transition of TSL using a differential scanning calorimetry (DSC) was also investigated. Phase transition temperature $(T_c)$ of TSL was dependent on the lipid compositions of TSL ADM broadened thermogram of TSL but Ara-C did not. However, $T_c$ of TSL was not changed by any drug. Release rate of drugs was highly dependent on temperature. The release profile of ADM was similar to that of Ara-C. The maximum release rate of drugs from TSL was occurred at the near $T_c$ and observed at $39-41^\circ{C}$ for DPPC (Dipalmitoylphosphatidylcholine) only, $52-54^\circ{C}$ for DPPC and DSPC (1:1), respectively. Effect of human serum alburmin (HAA) on the release rate of ADM was investigated. HSA had no significant effect on the release of ADM below $T_c$. However, ADM release from TSL was increased at the near and above $T_c$. The HSA-induced leakage of drug may result from the interaction of liposomal constituents with HSA structure at the near TEX>$4^\circ{C}$. From the fact that the release profiles of ADM from freshly prepared TSL and stored TSL for 1 week at TEX>$4^\circ{C}$ was not changed, the TSL was considered to be stable for at least 1 week at TEX>$4^\circ{C}$. Based on these findings, TSL may be useful to deliver drugs to preheated target sites due to its thermal behaviors.

  • PDF

Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(II) (고에너지 열가소성 추진제 제조 및 특성연구(II))

  • Kim, Han-cheol;Park, Eui-Yong;Jeong, Jea-Yun;Kim, Yoon-Gon;Choi, Sung-han;Kang, Tae-won;Oh, Kyeong-won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2020
  • In this study, measurement and analysis results from Differential scanning calorimetry(DSC) and Thermogravimetric analysis(TGA) on the newly developed high-energy thermoplastic elastomer(ETPE) propellant are described, followed by the previous study done under the same title as this paper [1]. The characteristics of high-energy thermoplastic propellant were also verified by conducting thermal analysis, and the LSGT, Shotgun & RQ Bomb test, was carried out as well. High energetic thermoplastic binders containing 45% of GAP(Glycidyl Azide Polymer), energetic plasticizer(DEGDN) and Oxidizer Aonium Perchlorate), RDX(reseach development explosive, cyclotrimethylenetrinitramine) were used to formulate the propellant.

Physicochemical and textural properties of emulsions prepared from the larvae of the edible insects Tenebrio molitor, Allomyrina dichotoma, and Protaetia brevitarsis seulensis

  • Kim, Tae-Kyung;Yong, Hae In;Jung, Samooel;Sung, Jung-Min;Jang, Hae Won;Choi, Yun-Sang
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.417-425
    • /
    • 2021
  • The use of edible insects to replace meat protein is important to ensure future global food security. However, processed foods using edible insects require development to enhance consumer perception. Here, we examined the physicochemical characteristics and rheological properties of emulsions prepared from different edible insect larvae. Three edible insect species (Tenebrio molitor, Allomyrina dichotoma and Protaetia brevitarsis seulensis) were used to prepare larval emulsions that were formulated with 65% of insect larvae, 20% of pork back fat, and 15% ice. The A. dichotoma emulsion had the highest pH and lightness, redness, and yellowness values, while the T. molitor emulsion had the lowest pH and lightness, redness, and yellowness values. The T. molitor emulsion had the highest hardness, gumminess, chewiness, and apparent viscosity values but the lowest springiness and cohesiveness values. According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, T. molitor had the thickest bands, followed by P. brevitarsis seulensis. The differential scanning calorimetry distributions for the T. molitor and A. dichotoma emulsions showed one peak, while that of the P. brevitarsis seulensis emulsion had two peaks. The collective results suggest that T. molitor was the most suitable candidate (of the three tested species) for use as a meat replacement in terms of its physicochemical and rheological properties. It is important that such properties of insect-based emulsions are maintained using various technologies.

Phase Behavior of the Ternary NaCl-PuCl3-Pu Molten Salt

  • Toni Karlsson;Cynthia Adkins;Ruchi Gakhar;James Newman;Steven Monk;Stephen Warmann
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • There is a gap in our understanding of the behavior of fused and molten fuel salts containing unavoidable contamination, such as those due to fabrication, handling, or storage. Therefore, this work used calorimetry to investigate the change in liquidus temperature of PuCl3, having an unknown purity and that had been in storage for several decades. Further research was performed by additions of NaCl, making several compositions within the binary system, and summarizing the resulting changes, if any, to the phase diagram. The melting temperature of the PuCl3 was determined to be 746.5℃, approximately 20℃ lower than literature reported values, most likely due to an excess of Pu metal in the PuCl3 either due to the presence of metallic plutonium remaining from incomplete chlorination or due to the solubility of Pu in PuCl3. From the melting temperature, it was determined that the PuCl3 contained between 5.9 to 6.2mol% Pu metal. Analysis of the NaCl-PuCl3 samples showed that using the Pu rich PuCl3 resulted in significant changes to the NaCl-PuCl3 phase diagram. Most notably an unreported phase transition occurring at approximately 406℃ and a new eutectic composition of 52.7mol% NaCl-38.7mol% PuCl3-2.5mol% Pu which melted at 449.3℃. Additionally, an increase in the liquidus temperatures was seen for NaCl rich compositions while lower liquidus temperatures were seen for PuCl3 rich compositions. It can therefore be concluded that changes will occur in the NaCl-PuCl3 binary system when using PuCl3 with excess Pu metal. However, melting temperature analysis can provide valuable insight into the composition of the PuCl3 and therefore the NaCl-PuCl3 system.

Measurement of effective cure shrinkage of EMC using dielectric sensor and FBG sensor (유전 센서 및 광섬유 센서를 이용한 EMC 유효 경화 수축 측정)

  • Baek, Jeong-hyeon;Park, Dong-woon;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.83-87
    • /
    • 2022
  • Recently, as the thickness of the semiconductor package becomes thinner, warpage has become a major issue. Since the warpage is caused by differences in material properties between package components, it is essential to precisely evaluate the material properties of the EMC(Epoxy molding compound), one of the main components, to predict the warpage accurately. Especially, the cure shrinkage of the EMC is generated during the curing process, and among them, the effective cure shrinkage that occurs after the gelation point is a key factor in warpage. In this study, the gelation point of the EMC was defined from the dissipation factor measured using the dielectric sensor during the curing process similar with actual semiconductor package. In addition, DSC (Differential scanning calorimetry) test and rheometer test were conducted to analyze the dielectrometry measurement. As a result, the dielectrometry was verified to be an effective method for monitoring the curing status of the EMC. Simultaneously, the strain transition of the EMC during the curing process was measured using the FBG (Fiber Bragg grating) sensor. From these results, the effective cure shrinkage of the EMC during the curing process was measured.

Evaluation of Setting Time in Cement Paste with Fly Ash Replacement Using Piezoelectric Sensors (압전센서를 이용한 플라이애시 치환 시멘트 페이스트의 응결 시점 평가)

  • Jun-Cheol Lee;Tae-Yong Go;Chang-Yong Yi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.162-168
    • /
    • 2024
  • This study investigated the setting characteristics of cement paste with varying proportions of fly ash replacement using the electro-mechanical impedance (EMI) sensing technique. Cement paste samples were prepared with a water-to-binder ratio of 40 %, substituting fly ash for 10 %, 20 %, and 30 % of the cement weight. Piezoelectric (PZT) sensors were embedded in the center of each cement paste sample to continuously monitor the EMI signals. Vicat needle test and semi-adiabatic calorimetry test were conducted to validate the reliability of the EMI sensing technique in monitoring the setting of cement paste. Experimental results revealed notable changes in the magnitude and resonant frequency of the EMI resonant peaks during the setting time. It was confirmed that the setting times measured through the EMI sensing technique were correlated with those determined by the Vicat needle test and semi-adiabatic calorimetry test.