• 제목/요약/키워드: Calm water

검색결과 114건 처리시간 0.025초

Computation of Flows Around a High Speed Catamaran

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.465-472
    • /
    • 2001
  • A numerical study is carried out to clarify the characteristics of flow fields and breaking phenomena around a high speed catamaran hull advancing on calm water. Computations are carried out for Froude numbers between 0.2 and 1.0 and for ratios of the distance between hulls to the catamaran length varying between 0.2 and 0.5 for a mathematically defined Wigley hull. A Navier-Stokes solver which includes the nonlinearities of free surface conditions is employed. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, present computation results are compared with existing experimental results. As an application, the results of the displacement catamaran are used for the breaking analysis.

  • PDF

얇은배 선형이론에 의한 진폭영수 조피저항 선측파고, 침하와 Trim의 계산 (Calculation of Wave Amplitude Functions, Wave Resistance, Wave Elevation Along the Hull, Sinkage and Trim by First-Order Thin-Ship Theory)

  • 강신형;이영길;현범수
    • 한국기계연구소 소보
    • /
    • 통권9호
    • /
    • pp.153-167
    • /
    • 1982
  • From first-order thin-ship theory, we can obtain the" wave resistance, wave amplitude functions, wave elevation along the hull, sinkage and trim of a ship moving with constant speed into calm water. Generally, these calculations of ship is called with Michell’s Theory, and there is all the difference between calculated wave resistance and residual resistance from conventional wave resis¬tance test. But, these calculated results are important reference materials for initial hull form design procedure. Various calculated results for Shearer’ s Model, Wigley’s Model and Series 60 4210W Model have been calculated using this theory. The results are compared with the corresponding experimental values, and the agreement between theoretical and experimental values is considered satisfactory.

  • PDF

The Effect of Uncertainty in Sea Trial Measurement System on Speed-Power Performance

  • Seo, Dae-Won;Noh, Jackyou
    • 해양환경안전학회지
    • /
    • 제26권3호
    • /
    • pp.269-276
    • /
    • 2020
  • Sea trial tests are necessary to verify speed-power performance, and are an import contract between ship owners and shipyards. The International Organization for Standardization (ISO) published ISO 15016:2015, which specifies the correlation method between model and full-scale ships. The results of sea trials have been questioned because of the uncertainty of speed and power measurements, especially when sea conditions differ from ideal calm water conditions. In this paper, such uncertainties were investigated by utilizing the standard speed-power trial analysis procedure defined in ISO 15016:2015 through Monte Carlo simulations. It was found that the expanded uncertainty of the delivered power (PDid) at 95 % confidence interval (k = 2) was ±1.5 % under 75 % MCR conditions.

Simulation of Viscous Flow around the Moving Underwater Vehicle

  • Kwag, Seung-Hyun
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.202-206
    • /
    • 2001
  • A three dimensional incompressible Navier-Stokes code based on the third derivative upwind is employed to simulate the flow around the underwater vehicle advancing on the calm water. Computations are carried out in the range of Froude numbers 0.4 to 0.7. The wave resistance, lift, moment and the pressure distribution on the body are calculated. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, computation results are compared with existing experimental results.

  • PDF

자유표면 점성 유동의 준쇄파 수치연구 (Numerical Study on Sub-Breaking of Free Surface Viscous Flow)

  • 곽승현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.226-231
    • /
    • 2003
  • The viscous interaction of stern wave is studied by simulating the free-surface flows, including sub-breaking phenomena around a high speed catamaran hull advancing on calm water. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked. The numerical appearance of the sub-breaking waves is qualitatively supported by the experimental observation They are also applied to study precisely on the stern flow of S-103 as to which extensive experimental data are available. For the catamaran, computations are carried out for the mono ana twin hulls.

  • PDF

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

정치망어장의 어도 형성에 관한 기초연구 ( 1 ) - 어장환경 요인 - (Fundamental Studies on the Migrating Course of Fish Around the Set Net - Enviremental Conditions of fishing Ground -)

  • 이주희;염말구;이병기
    • 수산해양기술연구
    • /
    • 제22권3호
    • /
    • pp.1-7
    • /
    • 1986
  • This is a basic study of further investigating the effect of oceanographic conditons, such as bottom profile, currents, and temperature, to the fish migrating course around the set-net. The survey was held at Dojang Po, southern part of Geoje Island, from July to October in 1985. There was a sea valley of which depth was 20 to 40 meters around the set-net. Near the bottom of that sea valley, there was different current pattern to the upper layer. In the sea calm condition of July and October, the vertical profiles of current and water temperature were simple. But in rough condition of September, they were complicated because of wind tuburance.

  • PDF

선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구 (A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP)

  • 엄태진;이영길;정광열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

Experimental Study on Force and Yaw Moment Acting on Ship in Regular Wave with Various Wave Direction

  • Nguyen, Van-Minh;Yoon, Hyeon-Kyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.19-21
    • /
    • 2017
  • Ship maneuvering performance is usually estimated in calm water conditions which provide valuable information about the ship maneuvering characteristics at the early design stage. However, the course-keeping ability and the maneuvering performance of a ship can be significantly affected by the presence of waves when ship maneuvers in real sea condition. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves in the viewpoint of ship safety in the design stage. In this study, the force and yaw moment acting on a moving ship in regular waves with different wave length and wave direction will be performed in the square wave tank in Changwon National University. The results of this study can be used to help a person to design a ship hull with the best ship maneuverability in waves and disseminate knowledge on predicting ship maneuvering in regular waves in various wave directions.

  • PDF

Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions

  • Zaky, Mochammad;Yasukawa, Hironori
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.53-65
    • /
    • 2018
  • The load condition significantly influences ship maneuverability in calm water. In this research, the effect of the load condition on turning performance of a very large crude oil carrier (VLCC) sailing in adverse weather conditions is investigated by an MMG-based maneuvering simulation method. The relative drift direction of the ship in turning to the wave direction is $20^{\circ}-30^{\circ}$ in ballast load condition (NB) and full load condition (DF) with a rudder angle $35^{\circ}$ and almost constant for any wind (wave) directions. The drifting displacement in turning under NB becomes larger than that under DF at the same environmental condition. Advance $A_d$ and tactical diameter $D_t$ become significantly small with an increasing Beaufort scale in head wind and waves when approaching, although $A_d$ and $D_t$ are almost constant in following wind and waves. In beam wind and waves, the tendency depends on the plus and minus of the rudder angle.