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Simulation of Viscous Flow
around the Moving Underwater Vehicle
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ABSTRACT: A three dimensional incompressible Navier-Stokes code based on the third derivative upwind is
employed to simulate the flow around the underwater vehicle advancing on the calm water. Computations are
carried out in the range of Froude numbers 04 to 0.7. The wave resistance, lift, moment and the pressure
distribution on the body are calculated. Computations are performed in a rectangular grid system based on the

Marker & Cell method. For validation,

1. INTRODUCTION

The inviscid flow about a body of revolution has long since
been formulated and studied in detail. Practically, because of the
predominan: viscous effect near the boundary layer, the related
flow pattern is much more complicated, especially if the body is
at an incidence with respect to the flow direction. The wake of
the body becomes turbulent, and various types of cross flow
separation takes place. The basic hull form of a modem
submersible is typically a body of revolution. While maneuvering
at high speed, the hull may be subject to severe hydrodynamic
forces. Under certain conditions, the moment of forces about the
center of buoyance of the body may cause instability. In order to
achieve a higher envelope of maneuverability and controllability,
the designers of the modemn submersible have practical interest in
predicting the hydrodynamic response for any given planned
movement. Such interest can be best served by parallel efforts in
enlarging the data base from controlled laboratory environment
and developing accurate computational schemes. Extensive
experiments were carried out by various research parties, some of
the representative results were borrowed from references;
Ramaprian(1981), Intermann(1986), and Kim(1991). More recently,
computational efforts based on newly developed numerical
schemes offer encouraging predictions; Vatsa(1989), Degani(1991),
Hartwich(1990), Sung(1993), Meir (1985), Freeman(1932). This
paper represents a study of the accuracy and feasibility of

computation results are compared with existing experimental results.

predicting forces and moment on a body of revolution hull form.

2. NUMERICAL SCHEME

2.1 Basic equations
Numerical simulations of 3-D free-surface flows are
camied out by solving Navier-Stokes equations. The
velocity components u, v and w at (n+l) time step are
determined by
ul=(F"= 0 )t
v"=( G- 0 at 1)
wn+1=( Hn_ m :)At
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Differentiating Eq. (1) with respect to X, y and z, we can
get

V0= F,+ G,+ H,
(w0 w2 At 5)

The last term in Eq. (5) is expected to be zero to satisfy
the continuity condition. Equation (5) can be solved by the
relaxation method.

It is desirable to introduce coordinate transformations
which simplify the computational domain in the transformed
domain

E=&x,9,2), n=0x,3.2), {t=Ux,y,2) 6)
Through transformations, Eq. (1) can be written,

@+ Uqe+ Vg, +Wq,

=(#+ v,) v 2q— K— REYSF(¢,9, ) @

where U, V and W are the contravariant velocities and K
is the pressure gradient. The pressure is calculated by the
following relaxation formula,

-(o™'-0™ 8

1
o™ = O™ w

where (m*+1) denotes the next time step and o is a
relaxation factor.

2.2 Computational procedure and boundary conditions

The N-S and Poisson equations are solved after
transformation, in which the calculation proceeds through a
sequence of loops each advancing the entire flow
configuration through sufficiently small finite time increment.
The output of each loop is taken as an initial condition for
the next. The computation is performed until the state is
steady. An Euler explicit scheme is used for the time
marching procedure. Pressures are obtained throughout the
fluid domain by solving the Poisson equation. Iterations are
automatically stopped when the pressure difference between
two consecutive approximations is smaller than a certain
quantity ¢, chosen a priori. The new pressure field
generates a new velocity field. The velocity component is
updated by using the time-forward difference form of the
momentum equations. )

The third order upstream difference is used for convection
terms with the fourth-order truncation error, for example;

U- (8f/8x)ix
= Uijk * G2k 81kt 8fiv1jx—Tiajn)/12 9)
Uik |+ (iajp—dfio1juct6fijp-afinjctfiezin)/4

+

As boundary conditions, the following are used.

upstream

u=1,v=0 w=0and p= 0

Au=Av=Aw =0
downstream

Ue= ve= We= 0

Aug= Ave= Awe= Ape = 0
symmetrical

Up= Vy= wy=0

Auy= AVy= AW,y= Apy, =0
body surface

u=v=w=0, pr =0

Au=Av=Aw=0, Ap; =0

23 Free surface boundary condition

The fluid particle is moved on the free surface by

-%—% +uTt —w = ( a0
The boundary condition for the free surface requires zero
tangential stress and a normal stress that balances any
externally applied normal stress. The displacement of the
particle is given by

an

Ax=u+ ot Ah=w- At
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where At is the time increment. On the other hand, the
use of an FEuler-type expression of the kinematic free
surface boundary condition makes it possible to employ a
higher finite difference scheme. The condition can be written

as follows:

ntl :
aha’t +(u,~+%— INPR

ntl
a};’x —w;=0 (12)

where k= h(x,t) represents the elevation.
Expanding in Taylor series, the derivative term can be
discretized by using

ntl
aha’[ - = 21M (A" 4R+ 30" (13)
For the os""'/ox  derivative, the third order upwind

difference(TOUD) is adopted.

BB = oL (—on, 9k, - 18hiy+11h) (14)

where c¢ is the convective velocity; it can be decomposed
into two parts. One is the central differencing term whose
mathematical expression can be obtained by suitable Taylor
expansions as follows:

242;: (him3—2Th; 3 +2Thi_1— k) (15)

The other is the diffusion term, which has the meaning of
the fourth derivative of the velocity.

8?’Acx(—h,»_3+7h,»,2—llh,-_1+5h,») (16)

The latter is expected to play a role to compensate the
finiteness of the differentiation without phase shift. Here
we similarly introduce the third derivative, Eq. (17) which
contributes to reduce the phase shift together with damping.
It is also obtained by the Taylor expansions around i -1}

as follows:

(ZJCC)T(—hi-3+3h,’—2—3h/—1+hi) a7

2
where a=——-(—AG—")— is a constant.

Equation (17) is added to the right handed side term of Eq.
(14), and the new formulation for the 34/ax becomes,

ok _ 1
“ox = “Box

(= hi_y+6h;_y~15h; | +10h)

+ ac
(ax)’

(—h,‘_3+3hi_2_3h,‘_1+hi) (18)

Equation (18) is the same expression used by Dawson
(1977) in his steady flow problem by the Rankine source
method where he derived dr/dx omitting the terms of the
third derivatives intuitively. Introducing Eq. (13) and Eq.
(18) into Eq. (12), the vertical coordinate increment at each
time step can be,

LhT=
(19)
3axChI— AT 4+ ot [6wibx+ ul AT 3—6ARE,+158AE, — QD)
9ax+ at- [0+ QE‘%—GA::—%%]

The expression is of the second order accuracy for A(0(#%)
for any «>0. Q" in Eq. (19) is

Qi =—hl 3+ 6k} o —15h7- |+ 10k} (20)
where % at the (n+1)* step is calculated as

l=p"+an” (21)

3. RESULTS AND DISCUSSION

3.1 Underwater Body of Revolution

The underwater body of revolution was numerically tested
at Froude number of 04 to 07. Figure 1(a) shows the
sectional grid view where the grid size is 104x48x23. Figure
1(b) is the grid for the revolutional body at incidence. The
time increment At is 0.0005 to meet the Courant condition.
The Baldwin-Lomax model is used for the turbulence.
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Fig. 1(a) Sectional view of grid generation



Fig. 1(b) Grid view of revolutional body

For the computation domain, 80% of the vehicle length is
occupied in lateral direction, and two and half times in
downstrearn. The grid is made as H-H topology to treat
the free surface movement more conveniently, The wave
height contours are shown in Fig. 2 at two different
Froude numbers.

Fig. 2 Free surface waves ( upper: d/h=0.16, t=3.0
middle: d/h=0.16, t=4.0, lower: d/h=0.245, t=3.0)

In Fig. 3, the velocity vectors can be seen at three sections; near
near the bow, midship and near the stern at d/h= 0.16. Fig. 4
shows the comparison of the hydrodynamic coefficients at
different Froude numbers. The present results agree well with
others.

Fig. 5 shows the lift, drag and moment acting on the spheroid as
a function of time. As seen, the solution is close to the steady
state after the body has moved three body lengths.
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Fig. 3 Velocity vectors at d/h=0.16 (upper: near the
bow, middle: midship, lower: near the stern)
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Fig. 4 Hydrodynamic coefficients at different Froude numbers

4. CONCLUSION

For the underwater vehicle, the flow characteristics is
numerically investigated by showing the wave patterns on
the free surface. Hydrodynamic coefficients are compared at
different Froude numbers. The calculated results agree well
with others’ results. The lift, drag and moment are shown
as a function of time. The solution shows the steady state
after the body has moved several body lengths.
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Fig. 5 Hydrodynamic coefficients along the time marching
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