• Title/Summary/Keyword: California

Search Result 2,599, Processing Time 0.032 seconds

Janus - Multi Source Event Detection and Collection System for Effective Surveillance of Criminal Activity

  • Shahabi, Cyrus;Kim, Seon Ho;Nocera, Luciano;Constantinou, Giorgos;Lu, Ying;Cai, Yinghao;Medioni, Gerard;Nevatia, Ramakant;Banaei-Kashani, Farnoush
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • Recent technological advances provide the opportunity to use large amounts of multimedia data from a multitude of sensors with different modalities (e.g., video, text) for the detection and characterization of criminal activity. Their integration can compensate for sensor and modality deficiencies by using data from other available sensors and modalities. However, building such an integrated system at the scale of neighborhood and cities is challenging due to the large amount of data to be considered and the need to ensure a short response time to potential criminal activity. In this paper, we present a system that enables multi-modal data collection at scale and automates the detection of events of interest for the surveillance and reconnaissance of criminal activity. The proposed system showcases novel analytical tools that fuse multimedia data streams to automatically detect and identify specific criminal events and activities. More specifically, the system detects and analyzes series of incidents (an incident is an occurrence or artifact relevant to a criminal activity extracted from a single media stream) in the spatiotemporal domain to extract events (actual instances of criminal events) while cross-referencing multimodal media streams and incidents in time and space to provide a comprehensive view to a human operator while avoiding information overload. We present several case studies that demonstrate how the proposed system can provide law enforcement personnel with forensic and real time tools to identify and track potential criminal activity.

Higher Order Polymer Architectures Containing Ethylene and Functionalized Comonomers

  • Bazan, Guillermo;Diamanti, Steve;Coffin, Robert;Hotta, Atsushi;Khanna, Vikram;Fredrickson, Glenn;Kramer, Ed
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.156-157
    • /
    • 2006
  • Quasi-living polymerization conditions for the copolymerization of ethylene and functionalized norbornenes can be achieved by using an initiator system comprising $[N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)-propanamidato-{\kappa}^2N,O]Ni({\Box}^1-CH_2Ph)(PMe_3)\;and\;Ni(COD)_2$. It is possible with this polymerization system to obtain block-copolymer and tapered structures. The latter form microdomains similar to those of standard block co-polymers. The mechanism of the reaction will also be discussed.

  • PDF

Biologically-Inspired Selective and Sensitive Trinitrotoluene Sensors Using Conjugated Lipid-like Polymer Nanocoatings for CNT-FET Sensors

  • Jaworski, Justyn;Kim, Tae-Hyun;Yokoyama, Keisuke;Chung, Woo-Jae;Wang, Eddie;Lee, Byung-Yang;Hong, Seung-Hun;Majumdar, Arun;Lee, Seung-Wuk;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.495-495
    • /
    • 2011
  • Miniaturized sensors capable of both sensitive and selective real-time monitoring of target analytes are tremendously valuable for various applications ranging from hazard detection to medical diagnostics. The wide-spread use of such sensors is currently limited due to insufficient selectivity for target molecules. We developed selective nanocoatings by combining trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) with single-walled carbon nanotube-field effect transistors (SWNT-FET). Selective binding events between TNT molecules and phage display derived TNT receptors were effectively transduced to sensitive SWNT-FET conductance sensors through the PDA coating. The resulting sensors exhibited unprecedented 1 fM sensitivity toward TNT in real time, with excellent selectivity over various similar aromatic compounds. Our biomimetic receptor coating approach may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

  • PDF

Cyt1Aa from Bacillus thuringiensis subsp. israelensis Enhances Mosquitocidal Activity of B. thuringiensis subsp. kurstaki HD-1 Against Aedes aegypti but not Culex quinquefasciatus

  • Park, Hyun-Woo;Pino, Brent C.;Kozervanich-Chong, Switzerlyna;Hafkenscheid, Erika A.;Oliverio, Ryan M.;Federici, Brian A.;Bideshi, Dennis K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.88-91
    • /
    • 2013
  • The Cyt1Aa protein of Bacillus thuringiensis subsp. israelensis is known to synergize mosquitocidal proteins of B. thuringiensis and Bacillus sphaericus strains. Cyt1Aa is highly lipophilic, and after binding in vivo to the midgut microvillar membrane serves as a "receptor" for mosquitocidal Cry proteins, which subsequently form cation channels that kill mosquito larvae. Here we report that Cyt1Aa can serve a similar function for lepidopteran-specific Cry proteins of B. thuringiensis in certain mosquito larvae. Engineering Cyt1Aa into the HD-1 isolate of B. thuringiensis subsp. kurstaki enhanced toxicity against $4^{th}$ instars of Aedes aegypti, but not against $4^{th}$ instars of Culex quinquefasciatus.

Multi-level remodeling of transcriptional landscapes in aging and longevity

  • Lai, Rochelle W.;Lu, Ryan;Danthi, Prakroothi S.;Bravo, Juan I.;Goumba, Alexandre;Sampathkumar, Nirmal Kumar;Benayoun, Berenice A.
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.86-108
    • /
    • 2019
  • In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.

Seismic evaluation of Southern California embankment dam systems using finite element modeling

  • Kamalzare, Mehrad;Marquez, Hector;Zapata, Odalys
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.319-328
    • /
    • 2022
  • Ensuring the integrity of a country's infrastructure is necessary to protect surrounding communities in case of disaster. Embankment dam systems across the US are an essential component of infrastructure, referred to as lifeline structures. Embankment dams are crucial to the survival of life and if these structures were to fail, it is imperative that states be prepared. Southern California is particularly concerned with the stability of embankment dams due to the frequent seismic activity that occurs in the state. The purpose of this study was to create a numerical model of an existing embankment dam simulated under seismic loads using previously recorded data. The embankment dam that was studied in Los Angeles, California was outfitted with accelerometers provided by the California Strong Motion Instrumentation Program that have recorded strong motion data for decades and was processed by the Center for Engineering Strong Motion Data to be used in future engineering applications. The accelerometer data was then used to verify the numerical model that was created using finite element modeling software RS2. The results from this study showed Puddingstone Dam's simulated response was consistent with that experienced during previous earthquakes and therefore validated the predicted behavior from the numerical model. The study also identified areas of weakness and instability on the dam that posed the greatest risk for its failure. Following this study, the numerical model can now be used to predict the dam's response to future earthquakes, develop plans for its remediation, and for emergency response in case of disaster.