• Title/Summary/Keyword: Calibration model

Search Result 1,569, Processing Time 0.029 seconds

Estimation of the Hapcheon Dam Inflow Using HSPF Model (HSPF 모형을 이용한 합천댐 유입량 추정)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.69-77
    • /
    • 2019
  • The objective of this study was to calibrate and validate the HSPF (Hydrological Simulation Program-Fortran) model for estimating the runoff of the Hapcheon dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input data for the HSPF model. Observed runoff data from 2000 to 2016 in study watershed were used for calibration and validation. Hydrologic parameters for runoff calibration were selected based on the user's manual and references, and trial and error method was used for parameter calibration. The $R^2$, RMSE (root-mean-square error), RMAE (relative mean absolute error), and NSE (Nash-Sutcliffe efficiency coefficient) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within ${\pm}4%$ error. The model performance criteria for calibration and validation showed that $R^2$ was in the rang of 0.78 to 0.83, RMSE was 2.55 to 2.76 mm/day, RMAE was 0.46 to 0.48 mm/day, and NSE was 0.81 to 0.82 for daily runoff. The amount of inflow to Hapcheon Dam was calculated from the calibrated HSPF model and the result was compared with observed inflow, which was -0.9% error. As a result of analyzing the relation between inflow and storage capacity, it was found that as the inflow increases, the storage increases, and when the inflow decreases, the storage also decreases. As a result of correlation between inflow and storage, $R^2$ of the measured inflow and storage was 0.67, and the simulated inflow and storage was 0.61.

Development of Calibration Model for Firmness Evaluation of Apple Fruit using Near-infrared Reflectance Spectroscopy (사과 경도의 비파괴측정을 위한 검량식 개발 및 정확도 향상을 위한 연구)

  • 손미령;조래광
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Using Fuji apple fruits cultivated in Kyungpook prefecture, the calibration model for firmness evaluation of fruits by near infrared(NIR) reflectance spectroscopy was developed, and the various influence factors such as instrument variety, measuring method, sample group, apple peel and selection of firmness point were investigated. Spectra of sample were recorded in wavelength range of 1100∼2500nm using NIR spectrometer (InfraAlyzer 500), and data were analyzed by stepwise multiple linear regression of IDAS program. The accuracy of calibration model was the highest when using sample group with wide range, and the firmness mean values obtained in graph by texture analyser(TA) were used as standard data. Chemometrics models were developed using a calibration set of 324 samples and an independent validation set of 216 samples to evaluate the predictive ability of the models. The correlation coefficients and standard error of prediction were 0.84 and 0.094kg, respectively. Using developed calibration model, it was possible to monitor the firmness change of fruits during storage frequently. Time, which was reached to firmness high value in graph by TA, is possible to use as new parameter for freshness of fruit surface during storage.

  • PDF

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Blind Drift Calibration using Deep Learning Approach to Conventional Sensors on Structural Model

  • Kutchi, Jacob;Robbins, Kendall;De Leon, David;Seek, Michael;Jung, Younghan;Qian, Lei;Mu, Richard;Hong, Liang;Li, Yaohang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.814-822
    • /
    • 2022
  • The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.

  • PDF

Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System (다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법)

  • Ju, Sungha;Yoon, Sanghyun;Park, Sangyoon;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.443-449
    • /
    • 2018
  • Acquiring indoor point cloud, using SLAM (Simultaneous Localization and Mapping) based mobile mapping system, is an element progress for development of as-build BIM (Building Information Model) for the maintenance of the building. In this research we proposed a simulation-based target geometry determination for extrinsic calibration of multiple 2D laser scanning mobile system. Four different types of calibration sites were designed: (1) circle type; (2) rectangle type; (3) double circle type; and (4) double rectangle type. Based on the measurement values obtained from each simulated calibration site geometry, least squares solution based extrinsic calibration was derived. As a result, the rectangle type geometry is most suitable for extrinsic calibration of this system. Also, correlation values between extrinsic calibration parameters were high, and calibration results were distinct according to the calibration sites.

Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment (AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의)

  • Choi Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

Application of SWAT Model for Simulating Runoff and Water Quality Considering Climate Change (기후변화에 따른 미래 유출 및 수질 모의를 위한 SWAT 모형의 적용)

  • Chung, Eun-Sung;Kim, Sang Ug;Kim, Hyeong Bae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.9-16
    • /
    • 2016
  • In the face of increasing impact of climate change due to human activities, there has been an urgent need to resolve the problem in water resources planning management and environmental engineering. Therefore SWAT model was used to identify the impacts and change in hydrological cycle and environmental aspect. The most important step for the development of SWAT model is calibration procedure. Therefore, SWAT-CUP automatic calibration module was used to find some optimal parameters in SWAT model. After calibration in the cheongmicheon basin, SWAT model is used for the projected precipitation and temperature of RCP 4.5 and 8.5 climate change scenarios in AR5. The quantity and quality using SWAT model from 2014 to 2100 were identified. Finally, this study can provide the reasonable finding on impact by climate change.

  • PDF

Calibration of crack growth model for damage tolerance analysis (손상허용해석을 위한 균열성장모델 교정)

  • 주영식;김재훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

POLARIZATION-MAGNETIC FIELD CALIBRATION CURVE (편광-자기장 눈금조정 곡선)

  • Kim, Kap-Sung
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.1-21
    • /
    • 1997
  • We have obtained theoretical calibration curves to convert the amount of polarization into the strength of magnetic field, by a numerical calculation of radiation transfer for the polarized spectral line of FeI $6303{\AA}$. In our calculation, three kinds of atmospheric models (VAL-C, penumbra, umbra) have been used to make a proper calibration for an active region composed of quiet, penumbral and umbral areas. It was found that firstly, the results of our calculation depend highly on a kind of atmospheric model rather than on any other input parameters used in a model. Secondly, observed line profile showed m solar spectrum atlas proved to be very similar to the calculated profiles obtained by using a penumbra model. Finally, another method except this calibration curve should be developed to estimate correctly the distribution of magnetic field in solar active region from the observation of polarized spectral line.

  • PDF

Analysis on the Economic Effects of Calibration for Measurement Instrument in Korean Industry (우리나라 산업(産業)의 측정기기에 대한 교정검사실시효과분석(較正檢査實施效果分析))

  • Kim, Dong-Jin;Choe, Jong-Hu;An, Ung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.83-94
    • /
    • 1991
  • The purpose of this study is to analyze the economic efficiency of the investment for calibrating measurement instruments in manufacturing industries, and to propose the administration scheme of measurement instruments. To investigate the efficieny of calibration, we estimate a multiple regression model composed of variables - product inferiority-rate, calibration rate, etc-, and verify fitness of the model. According to the statistical analysis by LOGIT method, a forecasting model of product inferiority-rate with calibration-related variables is proposed, and its validity is investigated.

  • PDF