• Title/Summary/Keyword: Calibration matrix

Search Result 255, Processing Time 0.024 seconds

The Study on Analytical Method of Lead, Cadmium and Chromium in Copper Metal by Matrix Matching Method of Inductively Coupled Plasma Atomic Emission Spectrometer (유도결합 플라즈마 발광분광기의 매트릭스 보정법에 의한 구리 중납, 카드뮴 및 크롬 분석에 관한 연구)

  • Joo, Sung-Kyun;Kim, Joon;cheong, Nam-Yong;Lim, Kyu-Chual;Choi, Young-Hwan;Kim, Sang-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.293-301
    • /
    • 2009
  • Analytical results of a fixed concentration of Pb, Cd and Cr in the synthetic copper standard solution (RMs) for using the matrix no matched standard calibration curve at various wavelength by ICP showed that accuracy (140 $\sim$ 1,070% in case of Pb) is very poor at all wavelengths because of the Cu matrix effect. Analytical results of a fixed concentration of Pb, Cd and Cr in the different concentration solutions of Cu showed that found values were on the increase or decrease as the rate of a regular equation as the concentration of Cu was increased. Accuracies by the Cu matching method in the analysis of Pb, Cd and Cr in the synthetic copper standard solution (RMs) were higher than 99.9%.

The Use of Vibro-acoustical Reciprocity to Estimate Source Strength and Airborne Noise Synthesis (구조-음향 상반성 원리를 이용한 공기기인 소음원의 강도 추정 및 소음 합성)

  • Kim, Yoon-Jae;Byun, Jae-Hwan;Kang, Yeon-June;Hong, Jin-Chul;Kwon, O-Jun;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2009
  • In this paper, an alternative method was introduced to conduct a transfer path analysis for airborne noise. The method used the transfer function matrix composed of acoustic transfer functions that are referenced by the input voltage of a calibration source. A calibration factor which is converting a virtual voltage to source strength was deduced by vibro-acoustical reciprocity theorem. The calibration factor is then multiplied to the virtual input voltage to estimate the operational source strength. Three loudspeakers were used to noise sources of acrylic half car model. The method was applied to airborne noise transfer path analysis of the half car. The estimated source strength by transfer path analysis was compared the deduced source strength by vibro-acoustical reciprocity to verify the method.

An RSS-Based Localization Scheme Using Direction Calibration and Reliability Factor Information for Wireless Sensor Networks

  • Tran-Xuan, Cong;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.45-61
    • /
    • 2010
  • In the communication channel, the received signal is affected by many factors that can cause errors. These effects mean that received signal strength (RSS) based methods incur more errors in measuring distance and consequently result in low precision in the location detection process. As one of the approaches to overcome these problems, we propose using direction calibration to improve the performance of the RSS-based method for distance measurement, and sequentially a weighted least squares (WLS) method using reliability factors in conjunction with a conventional RSS weighting matrix is proposed to solve an over-determined localization process. The proposed scheme focuses on the features of the RSS method to improve the performance, and these effects are proved by the simulation results.

Load Measurement Algorithm for a Vehicle Wheel Dynamometer (자동차 휠 동력계의 하중 검출 신호 처리 방법)

  • Lee, Jinsung;Jeong, Kyuwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.418-424
    • /
    • 2017
  • A wheel dynamometer was installed between the rim and axle hub to measure the forces and moments applied to a vehicle. The wheel dynamometer was composed of sensing and signal processing components. Because the sensing component contained a complex structure to sense the six components of the forces and moments and the wheel rotated along with the vehicle movement, sophisticated signal processing hardware and a software algorithm were used. The strains and the calibration matrices of the wheel dynamometer along the wheel rotation angle were investigated using FEM. From the analysis, the calibration matrices were simplified using a spline interpolation. Based upon these results, the signal processing component could be effectively designed and the firmware software could be simplified.

A study on scanner calibration method using nonlinear regression analysis in sub-divided color space (분할된 색공간에서 비선형 다중회귀분석법을 이용한 스캐너 켈리브레이션에 관한 연구)

  • 김나나;구철회
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.12a
    • /
    • pp.0.2-0
    • /
    • 2000
  • Most important step for the color matching in scanner is the color coordinate transformation from the scanner RGB space to device independent uniform color space. A variety of color calibration technologies have been developed for input device. Linear or nonlinear matrices have been conveniently applied to correct the color filter\`s mismatch with color matching function in scanners. The color matching accuracy is expected to be further improved when the nonlinear matrices are optimized into subdivided smaller color spaces than in single matrix of the entire color space. This article proposed the scanner calibration method using subspace division regression analysis and it were compared with conventional method.

  • PDF

A study on scanner calibration method using nonlinear regression analysis in sub-divided color space (분활된 색공간에서 비선형 다중회귀 분석법을 이용한 스캐너 캘리브레이션에 관한 연구)

  • 김나나;구철희
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.1
    • /
    • pp.4-16
    • /
    • 2001
  • Most important step for the color matching in scanner is the color coordinate transformation from the scanner RGB space to device independent uniform color space. A variety of color calibration technologies have been developed for input device. Linear or nonlinear matrices have been conveniently applied to correct the color filter's mismatch with color matching function in scanners. The color matching accuracy is expected to be further improved when the nonlinear matrices are optimized into subdivided smaller color spaces than in single matrix of the entire color space. This article proposed the scanner calibration method using subspace division regression analysis and it were compared with conventional method.

  • PDF

Development and Application of Mueller Matrix Ellipsometry (Mueller Matrix Ellipsometry 제작 및 응용)

  • 방경윤;경재선;오혜근;김옥경;안일신
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.31-34
    • /
    • 2004
  • We develop Mueller-matrix spectroscopic ellipsometry based on dual compensator configuration. This technique is very powerful for measuring surface anisotropy in nano-scale, especially when materials show depolarization. Dual-rotating compensator configuration is adopted with the rotational ratio of 5:3 originally developed by Collins et al[1]. The instrument can provide 250-point spectra over the wavelength range from 230 nm to 820 nm in one irradiance waveform with minimum acquisition time of Tc=10 s. In this work, the results obtained in transmission modes are presented for the initial attempt. We present calibration procedures to diagnose the system from the utilized data collected in transmission mode without sample. We expect that the instrument will have important applications in thin films and surfaces that have anisotropy and inhomogeneity.

  • PDF

An Estimation Method of the Covariance Matrix for Mobile Robots' Localization (이동로봇의 위치인식을 위한 공분산 행렬 예측 기법)

  • Doh Nakju Lett;Chung Wan Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.457-462
    • /
    • 2005
  • An empirical way of a covariance matrix which expresses the odometry uncertainty of mobile robots is proposed. This method utilizes PC-method which removes systematic errors of odometry. Once the systematic errors are removed, the odometry error can be modeled using the Gaussian probability distribution, and the parameters of the distribution can be represented by the covariance matrix. Experimental results show that the method yields $5{\%}$ and $2.3{\%}$ offset for the synchro and differential drive robots.

Calibration and Sensitivity Analysis of LRCS Rainfall-Runoff Model(I): Theory (LRCS 강우-유출 모형의 보정 및 민감도 분석(I) : 이론)

  • O, Gyu-Chang;Lee, Gil-Seong;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.657-664
    • /
    • 1999
  • This paper introduced the basic theory of LRCS(Linear Reservoir and Channel System) rainfall runoff model proposed by Korean researchers(Lee and Lee, 1995), and discussed the change of model output according to objective functions in sensitivity analysis and calibration process of model. It proposed "hat" matrix and affluence measures for affluence analysis of parameters in calibration, and investigated relationship between change of model output according to error propagation in parameter estimation, and sensitivity of model output according to variance of model output and change of parameters. Accuracy of parameter estimates was known by analysis of sensitivity coefficient, diagonal element $h_i$ and $D_i$._i$.

  • PDF

J-integral of Penny-Shaped Crack on the End of Stiff Fiber Embedded in Rubbery Materials (고무와 섬유로 구성된 복합체 내의 섬유 끝 부분의 원형 균열에 대한 J-적분)

  • Yang, Gyeong-Jin;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.617-624
    • /
    • 2002
  • An equation of J-integral for a penny-shaped crack at the end of the fiber embedded in rubber matrix is proposed. The values of J-integral for the specimens with various crack and specimen radius are obtained by FEA(Finite Element Analysis). The dimensional analysis is applied to derive an equation of J-integral as a nonlinear elastic energy release rate. The geometry and deformation calibration function in an equation of J can be expressed in a separated form. The geometry calibration function characterizing the effects of cord and specimen size is expressed in a polynomial form of fourth order. The deformation calibration function characterizes the effect of the overall level of strain. As approaching the infinitesimal strain, the value of the deformation calibration function approaches the results of LEFM(Linear Elastic Fracture Mechanics).