• Title/Summary/Keyword: Calibration Procedure

Search Result 401, Processing Time 0.032 seconds

Variation of Hydrogen Residue on Metallic Samples by Thermal Soaking in an Inert Gas Environment (불활성 가스하 열건조에 따른 금속시험편의 수소잔류물 거동 분석)

  • Lee, Yunhee;Park, Jongseo;Baek, Unbong;Nahm, Seunghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Hydrogen penetration into a metal leads to damages and mechanical degradations and its content measurement is of importance. For a precise measurement, a sample preparation procedure must be optimized through a series of studies on sample washing and drying. In this study, two-step washing with organic solvents and thermal soaking in inert gas were tried with a rod-shaped, API X65 steel sample. The samples were machined from a steel plate and then washed in acetone and etyl-alcohol for 5 minute each and dried with compressed air. After then, the samples were thermally soaked in a home-made nitrogen gas chamber during 10 minute at different heat gun temperatures from 100 to $400^{\circ}C$ and corresponding temperature range in the soaking chamber was from 77 to $266^{\circ}C$ according to the temperature calibration. Hydrogen residue in the samples was measured with a hot extraction system after each soaking step; hydrogen residue of $0.70{\pm}0.12$ wppm after the thermal soaking at $77^{\circ}C$ decayed with increase of the soaking temperature. By adopting the heat transfer model, decay behavior of the hydrogen residue was fitted into an exponential decay function of the soaking temperature. Saturated value or lower bound of the hydrogen residue was 0.36 wppm and chamber temperature required to lower the hydrogen residue about 95% of the lower bound was $360^{\circ}C$. Furthermore, a thermal desorption spectroscopy was done for the fully soaked samples at $360^{\circ}C$. Weak hydrogen peak was observed for whole temperature range and it means that hydrogen-related contaminants of the sample surface are steadily removed by heating. In addition, a broad peak found around $400^{\circ}C$ means that parts of the hydrogen residue are irreversibly trapped in the steel microstructure.

Evaluation of OSLD and EBT3 film for dose, energy, and angular dependence (OSLD와 EBT3 필름의 선량, 에너지, 방향의존성에 대한 평가)

  • Lee, Ju-seong;Kang, Bo-ram;Kwon, Hyeon-Kyung;Park, Ji-Young;Kim, Ju-Hye;Choi, Young-Se;Kim, Daehong
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • A radiation dosimeter is important to assess quality assurance (QA) of radiation therapy devices and to estimate the radiation dose in vivo dosimetry. Recently, optically stimulated luminescence detector (OSLD) is widely used in clinical filed. Therefore, the purpose of this study is to evaluate dose, energy, and angular dependence of OSLD and EBT3 film. The absorbed dose in clinical linear accelerator (Linac) beam is calibrated for dose per monitor unit (MU). Dose, energy, and angular dependence of OSLD and EBT3 film are estimated after the calibration procedure. The absorbed dose is measured at 50, 100, 150, and 200 cGy in an 6 MV X-ray beam for dose dependence. A dose of 150 cGy is delivered to OSLD and EBT3 film with 6 and 10 MV photon energies for energy dependence. For measurements of angular dependence, angular positions of gantry are $0^{\circ}{\pm}80^{\circ}$ with 6 MV at 150 cGy. The results of dose dependence is linear for OSLD and EBT3 film. For the results of energy dependence, errors were 0.39% and 0.03% for OSLD and EBT3 film, respectively. The results of dose for angular is decreased from $0^{\circ}$ to ${\pm}80^{\circ}$ for both OSLD and EBT3 film. When angle of $0^{\circ}$ is normalized to 1, and the dose is decreased to 60 and 66% at $80^{\circ}$ for OSLD and EBT3 film, respectively. Dose and energy dependence of OSLD and EBT3 film are measured within the recommendation of manufacturer. Angular dependence is increased from $0^{\circ}$ to ${\pm}80^{\circ}$ for OSLD and EBT3 film. The characteristics of OSLD and EBT3 film are similar and expected to useful for clinical field.

Quantitative Analysis of Acid Value, Iodine Value and Fatty Acids Content in Sesame Oils by NIRS (근적외선분광광도법을 이용한 참기름의 산가, 요오드가, 지방산정량법에 관한 연구)

  • Kim, Jae-Kwan;Lee, Myung-Jin;Kim, Myung-Gill;Kim, Kyung-A;Park, Eun-Mi;Kim, Young-Sug;Ko, Hoan-Uck;Son, Jin-Seok
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.204-212
    • /
    • 2006
  • This study was conducted to investigate the possibility of rapid and non-des tructive evalution of AV (Acid Value), IV (Iodine Value) and fatty acids in sesame oils. The samples were scanned over the range $400\sim2500nm$ using transmittance spectrum of NIRS(Near-infrared spectroscopy). A calibration equation calculated by MPLS regression technique was developed and correlation coefficient of determination for AV, IV, palmitic acid, stearic acid, linoleic acid and linolenic acid content were 0.9907, 0.9677, 0.9527, 0.9210, 0.9829, 0.9736 and 0.9709 respectively. The validation model for measuring the AV content had R of 0.989, SEP of 0.058 and IV content had R of 0.944, SEP of 0.562 and palmitic acid content had R of 0.924, SEP of 0.194 and stearic acid content had R of 0.717, SEP of 0.168 and oleic acid content had R of 0.989, SEP of 0.221 and linoleic acid content had R of 0.967, SEP of 0.297 and linolenic acid content had R of 0.853, SEP of 0.480 by MPLS. The obtained results indicate that the NIRS procedure can potentially be used as a non-destructive analysis method for the purpose of rapid and simple measurement of AV, IV and fatty acids in sesame oils.

Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke

  • Yiran Zhou;Di Wu;Su Yan;Yan Xie;Shun Zhang;Wenzhi Lv;Yuanyuan Qin;Yufei Liu;Chengxia Liu;Jun Lu;Jia Li;Hongquan Zhu;Weiyin Vivian Liu;Huan Liu;Guiling Zhang;Wenzhen Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.8
    • /
    • pp.811-820
    • /
    • 2022
  • Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.

Preparation of Pure CO2 Standard Gas from Calcium Carbonate for Stable Isotope Analysis (탄산칼슘을 이용한 이산화탄소 안정동위원소 표준시료 제작에 대한 연구)

  • Park, Mi-Kyung;Park, Sunyoung;Kang, Dong-Jin;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Jooil;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • The isotope ratios of $^{13}C/^{12}C$ and $^{18}O/^{16}O$ for a sample in a mass spectrometer are measured relative to those of a pure $CO_2$ reference gas (i.e., laboratory working standard). Thus, the calibration of a laboratory working standard gas to the international isotope scales (Pee Dee Belemnite (PDB) for ${\delta}^{13}C$ and Vienna Standard Mean Ocean Water (V-SMOW) for ${\delta}^{18}O$) is essential for comparisons between data sets obtained by other groups on other mass spectrometers. However, one often finds difficulties in getting well-calibrated standard gases, because of their production time and high price. Additional difficulty is that fractionation processes can occur inside the gas cylinder most likely due to pressure drop in long-term use. Therefore, studies on laboratory production of pure $CO_2$ isotope standard gas from stable solid calcium carbonate standard materials, have been performed. For this study, we propose a method to extract pure $CO_2$ gas without isotope fractionation from a solid calcium carbonate material. The method is similar to that suggested by Coplen et al., (1983), but is better optimized particularly to make a large amount of pure $CO_2$ gas from calcium carbonate material. The $CaCO_3$ releases $CO_2$ in reaction with 100% pure phosphoric acid at $25^{\circ}C$ in a custom designed, evacuated reaction vessel. Here we introduce optimal procedure, reaction conditions, and samples/reactants size for calcium carbonate-phosphoric acid reaction and also provide the details for extracting, purifying and collecting $CO_2$ gas out of the reaction vessel. The measurements for ${\delta}^{18}O$ and ${\delta}^{13}C$ of $CO_2$ were performed at Seoul National University using a stable isotope ratio mass spectrometer (VG Isotech, SIRA Series II) operated in dual-inlet mode. The entire analysis precisions for ${\delta}^{18}O$ and ${\delta}^{13}C$ were evaluated based on the standard deviations of multiple measurements on 15 separate samples of purified $CO_2$. The pure $CO_2$ samples were taken from 100-mg aliquots of a solid calcium carbonate (Solenhofen-ori $CaCO_3$) during 8-day experimental period. The multiple measurements yielded the $1{\sigma}$ precisions of ${\pm}0.01$‰ for ${\delta}^{13}C$ and ${\pm}0.05$‰ for ${\delta}^{18}O$, comparable to the internal instrumental precisions of SIRA. Therefore, we conclude the method proposed in this study can serve as a way to produce an accurate secondary and/or laboratory $CO_2$ standard gas. We hope this study helps resolve difficulties in placing a laboratory working standard onto the international isotope scales and does make accurate comparisons with other data sets from other groups.

Analysis of Systemic Pesticide Imidacloprid and Its Metabolites in Pepper using QuEChERS and LC-MS/MS (QuEChERS 전처리와 LC-MS/MS를 이용한 고추 중 침투성농약 Imidacloprid 및 대사물질 동시분석법)

  • Seo, Eun-Kyung;Kim, Taek-Kyum;Hong, Su-Myeong;Kwon, Hye-Yong;Kwon, Ji-Hyung;Son, Kyung-Ae;Kim, Jang-Eok;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.264-270
    • /
    • 2013
  • Imidacloprid is a systemic insecticide which act as an insect neurotoxin. It used for control of pest such as aphids and other sucking insects in fruits and vegetables. Systemic pesticides move inside a crop following absorption by the plant, and these were converted into a variety of metabolites. Sometimes these metabolites make a problem about safety of agricultural products. So a simultaneous determination method of pesticide and its metabolites is needed, to monitor their presence in agricultural product and study on the fate of pesticide in a plant. This study's aim is to investigate simultaneous analysis method of imidacloprid and its metabolites, imidacloprid guanidine, imidacloprid olefin, imidacloprid urea, and 6-chloronicotinic acid in red pepper using QuEChERS method and LC-MS/MS systems. QuEChERS method was modifed beacuase $MgSO_4$ salts decreased the recoveries of 6-chloronicotinic acid in extraction procedure. Imidacloprid and its metabolites were extracted by acetonitrile with 1% glacial acetic acid and the extracts were purified through QuEChERS with primary secondary amine (PSA) and $C_{18}$ and analyzed with LC-MS/MS in ESI positive mode. Standard calibration curves were made by matrix matched standards and their correlation coefficients were higher than 0.999. Recovery studies were carried out on spiked pepper blank sample at four concentration levels (0.01, 0.04 and 0.1, 0.4 mg/kg). The average recoveries of imidacloprid and its metabolites were in the range of 70~120% with < 20% RSD. This result indicated that the method using QuEChERS and LC-MS/MS was suitable for the simultaneous determination of imidacloprid and its metabolites in red pepper.

Optimization of Analytical Methods for Octacosanol in Related Health-functional Foods with GC-MS (GC-MS를 이용한 건강기능식품 중 옥타코사놀 분석법 개발 연구)

  • Lee, Jin Hee;Oh, Mi Hyune;Lee, Kyung Jin;Kim, Yang Sun;Keum, Eun Hee;Park, Ji Eun;Cho, Mee Hyun;Seong, Min Hye;Kim, Sang A;Kim, Mee hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.266-271
    • /
    • 2018
  • The Ministry of Food and Drug Safety (MFDS) is amending its test methods for health-functional foods (dietary food supplements) to establish regulatory standards and specifications in Korea. In this regard, we continue our research on developing analytical methods for the items. Octacosanol is the major component of polycosanol and is a high-molecular-mass primary fatty alcohol, obtained from sugar cane wax. Previous researchers have shown that octacosanol can lower cholesterol and has antiaggregatory properties, cytoprotective uses, and ergogenic properties for human health. Recently, octacosanol products have been actively introduced into the domestic market because of their functional biological activity. We have developed a sensitive and selective test method for octacosanol that the TMS derivatives by means of gas-chromatographic-tandem mass spectrometry (GC-MS). The trimethylsilyl ether derivative of the target analyte showed excellent chromatographic properties. The procedure was validated in the range of $12.5{\sim}200{\mu}g/L$. Standard calibration curves presented linearity with the correlation coefficient ($r^2$) > 0.999, and the limits of detection (LOD) and limits of quantitation (LOQ) were $4.5{\mu}g/L$ and $13.8{\mu}g/L$, respectively. The high recoveries (92.5 to 108.8%) and precision (1.8 to 2.4%) obtained are in accordance with the established validation criteria. Our research can provide scientific evidence to amend the octacosanol test method for the Health-Functional Food Code.

Development of a Residue Analysis Method for Metamifop in Paddy Water, Soil, and Rice with HPLC (HPLC를 이용한 농업용수, 논토양, 및 현미 중 metamifop의 잔류분석법 개발)

  • Park, Hee-Woon;Moon, Joon-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2017
  • An analytical method for detecting metamifop residue in paddy water, soil, and rice with high performance liquid chromatography (HPLC) was developed. Water was extracted with ethyl acetate before analyzing by HPLC. Soil residues were extracted with acetone under acidic condition and after purifying with $Extrelut^{(R)}$ NT, and silica SPE, the residue was analyzed by HPLC. For residue analysis in rice, the procedure involved extraction with acetone, purification with $Extrelut^{(R)}$ NT, partitioning between acetonitrile/hexane, purification with silica SPE cartridge, and analysis by HPLC. The limit of detection (LOD) was 1.0 ng, limit of quantitation (LOQ) was 3.0 ng, and method limit of quantitation (MLOQ) were 0.001 mg/L for paddy water, 0.01 mg/kg for rice and soil, respectively. Standard calibration curve shows linearity from 0.05 mg/kg to 5.0 mg/kg ($R^2=0.9999$). The recoveries in fortified paddy water were $91.3{\pm}3.5%$ (0.01 mg/L level) and $93.2{\pm}6.3%$ (0.05 mg/L level). The recoveries in fortified paddy soils were $92.5{\pm}4.0%$ (0.1 mg/kg level) and $92.7{\pm}4.0%$ (0.5 mg/kg level) in soil A, while, $102.3{\pm}4.4%$ (0.1 mg/kg level) and $98.9{\pm}7.9%$ (0.5 mg/kg level) in soil B, respectively. The recoveries in fortified rice were $93.0{\pm}6.9%$ (0.1 mg/kg level) and $85.0{\pm}3.5%$ (0.5 mg/kg level). This method was proved to be effective and can be used to determine the metamifop residue in paddy water, paddy soil, and rice.

Feasibility Study of Dose Evaluation of Stereotactic Radiosurgery using GafChromic $EBT^{(R)}$ Film (GafChromic $EBT^{(R)}$ 필름을 이용한 뇌정위방사선치료의 선량분석 가능성 평가)

  • Jang, Eun-Sung;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Purpose: We have performed SRS (stereotactic radiosurgery) for avm (arterry vein malformation) and brain cancer. In order to verify dose and localization of SRS, dose distributions from TPS ($X-Knife^{(R)}$ 3.0, Radionics, USA) and GafChromic $EBT^{(R)}$ film in a head phantom were compared. Materials and Methods: In this study, head and neck region of conventional humanoid phantom was modified by substituting one of 2.5 cm slap with five 0.5 cm acrylic plates to stack the GafChromic $EBT^{(R)}$ film slice by slice with 5 mm intervals. Four films and five acrylic plates were cut along the contour of head phantom in axial plane. The head phantom was fixed with SRS head ring and adapted SRS localizer as same as real SRS procedure. CT images of the head phantom were acquired in 5 mm slice intervals as film interval. Five arc 6 MV photon beams using the SRS cone with 2 cm diameter were delivered 300 cGy to the target in the phantom. Ten small pieces of the film were exposed to 0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 cGy, respectively to calibrate the GafChromic $EBT^{(R)}$ film. The films in the phantom were digitized after 24 hours and its linearity was calibrated. The pixel values of the film were converted to the dose and compared with the dose distribution from the TPS calculation. Results: Calibration curve for the GafChromic $EBT^{(R)}$ film was linear up to 900 cGy. The R2 value was better than 0.992. Discrepancy between calculated from $X-Knife^{(R)}$ 3.0 and measured dose distributions with the film was less than 5% through all slices. Conclusion: It was possible to evaluate every slice of humanoid phantom by stacking the GafChromic EBT film which is suitable for 2 dimensional dosimetry, It was found that film dosimetry using the GafChromic $EBT^{(R)}$ film is feasible for routine dosimetric QA of stereotactic radiosurgery.

  • PDF

Nasal Continuous Positive Airway Pressure Titration and Time to Reach Optima1 Pressure in Sleep Apnea Syndrome (수면 무호흡 증후군에서 지속적 양압 치료시의 최적압 및 그 도달기간)

  • Lee, Kwan-Ho;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.1
    • /
    • pp.84-92
    • /
    • 1995
  • Background: Nasal applied continuous positive airway pressure(CPAP) is a highly effective method of treatment for obstructive sleep apnea syndrome. More than a decade of accumulated experience with this treatment modality confirmed that it is unquestionably the medical treatment of choice for patients with obstructive sleep apnea syndrome. However it takes long time to reach optimal CPAP pressure. To save the time to reach optimal pressure, it is necessary to clarify the time to reach optimal pressure for treatment of obstructive sleep apnea syndrome. Method: CPAP pressure is titrated during an overnight study according to a standardized protocol. Just before the presleep bio-calibration procedures, the technician applies the nasal mask and switches on the clinical CPAP unit. Initial positive for pressure is typically 3.0 centimeters of water pressure. After sleep onset, the technician gradually increases the pressure until sleep-disordered breathing events disappear or become minimal. The pressure must maintain maximal airway patency during both NREM and REM sleep to be considered effective. Before recommending a final pressure setting, sleep recording and oximetry data are reviewed by an American Board of Sleep Medicine certified Sleep Specialist and a Registrered Polysomnographic Technologist. Results: We examined the time required to reach optimal pressure during routine CPAP titration in 127 consecutively evaluated individuals diagnosed with sleep-disordered breathing. Results indicate that 33% of patients required more than four hours to attain satisfactory titration. This indicates that a four-hour session is marginally enough time, at best, to determine a proper CPAP pressure setting. Moreover, 60 of 127 patients required further adjustment after optimal pressure was reached. These additional pressure trials were needed to confirm that higher pressures were not superior for eliminating sleep-disordered breathing events. Conclusions: The data presented underscore the logistical difficulty of titrating CPAP during split-night studies without modifying the titration procedure. Futhermore, the time needed to reach optimal pressure makes it improbable that proper CPAP titration can be performed during a 2-3 hour nap study.

  • PDF