• Title/Summary/Keyword: Calculation grid size

Search Result 55, Processing Time 0.026 seconds

An Optimization Method for Hologram Generation on Multiple GPU-based Parallel Processing (다중 GPU기반 홀로그램 생성을 위한 병렬처리 성능 최적화 기법)

  • Kook, Joongjin
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2019
  • Since the computational complexity for hologram generation increases exponentially with respect to the size of the point cloud, parallel processing using CUDA and/or OpenCL library based on multiple GPUs has recently become popular. The CUDA kernel for parallelization needs to consist of threads, blocks, and grids properly in accordance with the number of cores and the memory size in the GPU. In addition, in case of multiple GPU environments, the distribution in grid-by-grid, in block-by-block, or in thread-by-thread is needed according to the number of GPUs. In order to evaluate the performance of CGH generation, we compared the computational speed in CPU, in single GPU, and in multi-GPU environments by gradually increasing the number of points in a point cloud from 10 to 1,000,000. We also present a memory structure design and a calculation method required in the CUDA-based parallel processing to accelerate the CGH (Computer Generated Hologram) generation operation in multiple GPU environments.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water (수중 고온 단일 기포의 열전달 해석 연구)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2024
  • Bubbles generated in water receive an upward buoyant force due to the density and pressure difference of the surrounding fluid. Additionally, the behavior, shape, and heat exchange process of bubbles vary depending on the viscosity, surface tension, rising speed, and size difference with the surrounding fluid. In this study, we modeled speed, and heat transfer of a high-temperature single bubble rising in a cylindrical water tank. For this purpose, velocity, and temperature of the bubbles were calculated using theoretical equations, to be compared with numerical simulation results. The numerical analysis was performed using a commercial software, and the stability of the numerical analysis with mesh size was confirmed through calculation of the grid convergence index. The numerical analysis of the rising speed and temperature of a single bubble showed the values to converge when the minimum cell size was 1/160 of the bubble diameter, and the temperature decrease was confirmed to be the same as that of the surrounding fluid within 0.05 seconds.

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.

A CFD Study on Flow Characteristics with Inclined Angles of Two-Dimensional Sharp Plane (CFD에 의한 2차원 Sharp Plane의 각도변화에 따른 유동특성에 관한 연구)

  • 금종윤;박성호;박주헌;송근택;모장오;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.40-45
    • /
    • 2001
  • Recently, the use of numerical simulation has been increased rapidly because of the development of high performance computer systems. The present study is aimed to investigate flow characteristics of a two-dimensional sharp plane. Unsteady calculation by FDM(Finite Difference Method) based upon SOLA scheme which was performed at $Re=2{\times}10^4$in viscous incompressible flow within a finite domain on the irregular grid formation. Total numbers of irregular grids are $8{\times}10^4$. The minimum grid size is 1/100 of the plane length L which is the representative length. The inclined angles of every objects are $15^{\circ}, \;30^{\circ}\;and\; 45^{\circ}.$ And, the edge angle of the plane is $30^{\circ}.$ This study discussed the flow characteristics in term of the turbulent intensity, vorticity and frequency analysis. Developed flows show that the periodic Karman vortices occur at the back of the plane.

  • PDF

Development of Automatic Cruise System of Unmanned Boat for Surveying Water Depth in Reservoir Using GIS-GPS Technologies (GIS-GPS 기술을 이용한 저수지 수심측정 무인보트의 자율항법시스템 개발)

  • Kim, Dae-Sik;Kim, Jin-Taek;Pyo, Ki-Hyong;Lee, Jin-Bum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.9-17
    • /
    • 2010
  • In this paper, an automatic cruise system of unmanned boat was developed for surveying water depth in reservoir using GIS (geographic information system)-GPS (global positioning system) Technologies. the automatic cruise system consisted of an automatic path generation program (APGP) and an automatic boat control program (ABCP). A grid processing method with $3{\times}3$ roving window in GIS function was used to develop the APGP. For development of the ABCP, GPS and its coordinate calculation technique were introduced. The developed system was tested to verify the applicability for a sample reservoir, Misan reservoir located on Ansan city of Kyunggi province. From the test results, this study found the APGP generated cruise path automatically according to input condition on grid size of 5 m, 10 m, and 20 m, as well as, the ABCP also tracked well the cruise paths with high position accuracy. Another verification result on surveying time for 20 ha of water area also showed that the new system could survey water depth of reservoir quickly, including very high quality of spatial resolution.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.