• Title/Summary/Keyword: Calcium type

Search Result 796, Processing Time 0.023 seconds

Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds (펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1701-1708
    • /
    • 2007
  • Seed pelleting is generally conducted in order to save the labor for sowing and thinning by enabling the precision mechanical planting. In the present study, the influence of physical and chemical properties of pelleting solid materials was investigated on carrot seed germination. Among the pelleting solid materials evaluated, dialite, kaolin, and talc showed low bulk density and high porosity. Bentonite and dialite carried high water holding capacities of 184% and 173%, respectively, while calcium carbonate, calcium oxide, and fly ash showed relatively low water holding capacity. The pH of kaolin (6.8) and dialite (7.4) were close to neutral, while limestone (12.8), calcium oxide (13.0), and bentonite (10.0) were highly basic. High electro-conductivity was shown in limestone and calcium oxide. EDS analysis revealed that the main elemental compositions of talc were Si (71.0%) and Mg (29.0%), and those of calcium carbonate were Ca (66.6%), Si (22.9%), and Mg (10.5%). High granulation capacity was observed from talc and the mixture of talc and calcium carbonate. Seeds pelleted with bentonite showed the highest hardness. The dissolving type of the pellet layer after imbibition was split type in talc, limestone, zeolite, and fly ash, melt type in calcium carbonate and calcium oxide, and swell type in bentonite and vermiculite. The shortest dissolving time of pellet layer was observed from calcium carbonate and kaolin. The germination speed $(T_{50})$ was delayed as the size of pelleted seeds increased. The optimum size of pelleting was 19 ratio in carrot.

Evaluation of Water Softening with the Removal of Calcium Ion by Ion Flotation Approach

  • Mafi, Azadeh;Khayati, Gholam
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.219-224
    • /
    • 2021
  • Ion flotation is an efficient method to remove metal ions from aqueous solution. In this work, ion flotation was applied to calcium removal from aqueous solution. The parameters used included sodium stearate (SS) and sodium dodecyl sulfate (SDS) as collectors, 1-butanol and 1-propanol as frothers, pH, and air-flow rate. An L16 orthogonal array was chosen according to the mentioned factors and levels, and experimental tests were conducted according to the Taguchi orthogonal array. The results showed that all of the factors except one had significant effect on the flotation performance. The percentage contribution of parameters showed that type of frother and type of collector made the greatest (43.14%) and the lowest (9.86%) contribution, respectively. In optimal conditions, the recovery of Ca (II) ion was 45.67%. Also, the results illustrated that the Taguchi method could predict calcium removal from aqueous solution by ion flotation with 2.63%. This study showed that the use of ion flotation was an effective method for Ca (II) ion removal from aqueous solution.

Two Types of Voltage-activated Calcium Currents in Goldfish Horizontal Cells

  • Paik, Sun-Sook;Bai, Sun-Ho;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.269-273
    • /
    • 2005
  • In horizontal cells (HCs) that were freshly dissociated from goldfish retina, two types of voltagedependent calcium currents ($I_{Ca}$) were recorded using a patch-clamping configuration: a transient type current and a sustained type current. The cell was held at -40 mV, and the prepulse step of -90 mV was applied before command pulse between -65 and +55 mV. The transient $Ca^{2+}$ current was activated by depolarization to around -50 mV from a prepulse voltage of -90 mV lasting at least 400 ms and reached a maximal value near -25 mV. On the other hand, the sustained $Ca^{2+}$ current was induced by pre-inactivation for less than 10 ms duration. Its activation started near -10 mV and peaked at +20 mV. $Co^{2+}$ (2 mM) suppressed both of these two components, but nifedipine ($20{\mu}M$), L-type $Ca^{2+}$ channel antagonist, blocked only the sustained current. Based on the activation voltage and the pharmacolog$I_{Ca}$l specificity, the sustained current appears to be similar to L-type $I_{Ca}$ and the transient type to T-type $I_{Ca}$. This study is the first to confirm that transient type $I_{Ca}$ together with the sustained one is present in HCs dissociated from goldfish retina.

In vivo study on the biocompatibility of newly developed calcium phosphate-based root canal sealers

  • Kim, Jin-Su;Bae, Kwang-Shik
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.592-593
    • /
    • 2003
  • I. Objectives The purpose of this study was to compare in vivo the biocompatibility of new calcium phosphate-based root canal sealers(CAPSEAL I, CAPSEAL II) with another type of commercially available calcium phosphate sealer (Apatite Root Sealer type I, Apatite Root Sealer type II) and zinc oxide-eugenol-based sealer (Pulp Canal Sealer EWT) after implantaion in rat subcutaneous tissue. II. Materials and Methods 64 Sprague-Dawley rats were used. There were five groups of three animals each for experimental period of 1, 2, 4, and 12 weeks. The teflon tubes, 5mm in length with an inner diameter of 1.5mm, were washed with ethanol and distilled weter and autoclaved.(omitted)

  • PDF

The Effect of Carbon Monoxide on L-type Calcium Channel Currents in Human Intestinal Smooth Muscle Cells

  • Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.357-362
    • /
    • 2003
  • Carbon monoxide (CO) is low molecular weight oxide gas that is endogenously produced under physiological conditions and interacts with another gas, nitric oxide (NO), to act as a gastrointestinal messenger. The aim of this study was to determine the effects of exogenous CO on L-type calcium channel currents of human jejunal circular smooth muscle cells. Cells were voltage clamped with 10 mM barium ($Ba^{2+}$) as the charge carrier, and CO was directly applied into the bath to avoid perfusion induced effects on the recorded currents. 0.2% CO was increased barium current ($I_{Ba}$) by $15{\pm}2$% ($mean{\pm}S.E.$, p<0.01, n=11) in the cells. To determine if the effects of CO on barium current were mediated through the cGMP pathway, cells were pretreated with 1-H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{mu}M$), a soluble guanylyl cyclase inhibitor, and exogenous CO (0.2%) had no effect on barium currents in the presence of ODQ ($2{\pm}1$% increase, n=6, p>0.05). CO mediates inhibitory neurotransmission through the nitric oxide pathway. Therefore, to determine if the effects of CO on L-calcium channels were also mediated through NO, cells were incubated with $N^G-nitro-L-arginine$ (L-NNA, 1 mM), a nitric oxide synthase inhibitor. After L-NNA pretreatment, 0.2 % CO did not increase barium current ($4{\pm}2$% increase, n=6, p>0.05). NO donor, SNAP ($20{\mu}M$) increased barium current by $13{\pm}2$% (n=6, p<0.05) in human jejunal smooth muscle cells. These data suggest that CO activates L-type calcium channels through NO/cGMP dependant mechanism.

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Comparison of Usage Patterns and Outcomes by Dual Type Calcium Channel Blockers in Patients with Chronic Kidney Disease (만성 신장질환 환자에서 dual type calcium channel blocker의 사용 양상 및 결과 비교)

  • Oh, Mi Ran;Ahn, Hye Lim;Choi, Sun;La, Hyen Oh
    • Korean Journal of Clinical Pharmacy
    • /
    • v.30 no.4
    • /
    • pp.259-263
    • /
    • 2020
  • Background: Dual-type calcium channel blockers (CCBs), such as efonidipine and cilnidipine, are renoprotective drugs that reportedly reduce proteinuria by dilating afferent and efferent arterioles of the glomerulus. However, studies comparing the effect of dual-type CCB on proteinuria have not been conducted. Therefore, we aimed to compare the effect of dual-type CCB (efonidipine and cilnidipine) usage patterns in hypertensive patients with chronic kidney disease (CKD). Methods: This single-center, retrospective study included 53 patients with CKD who 1) initiated efonidipine or cilnidipine treatment while on a renin-angiotensin system inhibitor and 2) had received efonidipine or cilnidipine for at least one year. We compared usage patterns between the efonidipine and cilnidipine groups during the one-year period and analyzed the following outcomes: urinary protein-to-creatinine ratio, blood pressure, and serum creatinine. Results: The study included 25 patients in the efonidipine group and 28 patients in the cilnidipine group. In both groups, blood pressure and urinary protein-to-creatinine ratios tended to decrease; however, the change during each interval was not significant. Conclusions: In patients with CKD who were on renin-angiotensin system inhibitor therapy, the addition of a dual-type CCB (i.e., efonidipine or cilnidipine) tended to reduce proteinuria; however, the change during each interval was not significant.

EFFECT OF VARIOUS INODIZING CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANT SURFACE DESIGN (다양한 양극산화막 처리방법이 임프란트 골유착에 미치는 영향)

  • Cha, Soo-Ryun;Lee, Jun;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.5
    • /
    • pp.417-427
    • /
    • 2008
  • The aim of this study is to investigate the effect of anodizing surface to osseointegration of implant by using of resonance frequency analysis (RFA), quantitative and qualitative assessment of an anodically modified implant type with regard to osseous healing qualities. A total of 96 screw-shaped implants were prepared for this study. 72 implants were prepared by electrochemical oxidation with different ways. 24 (group 1 SP) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid. 24 (group 2GC) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate and 24 (group 3 CMP (Calcium Metaphosphate) Coating were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by CMP coating. Rest of 24 (control group were as a control group of RBM surface. Bone tissue responses were evaluated by resonance frequency analysis (RFA) that were undertaken at 2, 4 and 6 weeks after implant placement in the mandible of mini-pig. Group 1 SP (anodized with sulfuric acid and phosphoric acid implants) demonstrated slightly stronger bone responses than control Group RBM. Group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) demonstrated no difference which were compared with control group. Group 3 GMP (anodized and CMP coated implants) demonstrated slightly stronger and faster bone responses than any other implants. But, all observation result of RF A showed no significant differences between experimental groups with various surface type. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact for group 2 GC. Significantly more bone formation was found inside threaded area for group 2 GC. It was concluded that group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) showed more effects on the bone tissue responses than RBM surface in initial period of implantation. In addition, CMP showed a tendency to promote bone tissue responses.

Effects of ionized calcium on microbial cross-contamination in surface of carcass via slaughter process of chickens (이온화칼슘이 도계과정 중 도체표면의 미생물 교차오염에 미치는 영향)

  • Park, B.S.;Jin, J.Y.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.813-823
    • /
    • 2016
  • The purpose of this study was to investigate the effects of ionized calcium treatment on total bacterial cross-contamination of chicken carcass surface in the slaughtering process. The growth of Escherichia coli was strongly inhibited in a medium prepared by using a 0.5% ionized calcium solution. The total bacterial cross-contamination of chicken carcass surface and the scalding water was significantly increased as the number of scalding was increased (p<0.05). The total bacterial cross-contamination of chicken carcass surface reached a plateau without a further increase as scalding was performed consecutively for 10 or more times. The total bacterial cross-contamination of the scalding water was significantly increased as the number of scalding was increased (p<0.05). The total bacterial cross-contamination of chicken carcass surface of the chickens raised on a floor type farm was significantly higher than that of the chickens raised in a battery cages (p<0.05). The total bacterial cross-contamination of chicken carcass surface of the chickens raised on a floor type farm was significantly lower in the 0.5% ionized calcium solution treatment group than in the control group (p<0.05).

The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of calcium type catalysts addition on the thermal decomposition of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) resin have been studied in a thermal analyze. (TGA, DSC) and a small batch reactor. The calcium type catalysts tested were calcinated dolomite, lime, and calcinated oyster shell. As the results of TGA experiments, pyrolysis starting temperature for LDPE varied in the range of $330{\sim}360^{\circ}C$ according to heating rate, but EVA resin had the 1st pyrolysis temperature range of $300{\sim}400^{\circ}C$ and the 2nd pyrolysis temperature range of $425{\sim}525^{\circ}C$. The calcinated dolomite enhanced the pyrolysis rate in LDPE pyrolysis reaction, while the calcium type catalysts reduced the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of calcium type catalysts reduced the melting point, but did not affect to the heat of fusin. Calcinated dolomite reduced 20% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of calcinated dolomite and lime enhanced the yield of fuel oil, but did not affect to the distribution of carbon numbers.