• Title/Summary/Keyword: Calcium silicate hydroxide

Search Result 64, Processing Time 0.02 seconds

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Effect of Fly Ash Fertilizer on Paddy Soil Quality and Rice Growth (비산재로 제조한 비료가 논토양 질과 벼 생육에 미치는 영향)

  • Oh, Se Jin;Yun, Hyun Soo;Oh, Seung Min;Kim, Sung Chul;Kim, Rog Young;Seo, Yung Ho;Lee, Kee Suk;Ok, Yong Sik;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Coal ash can be added to agricultural soils to increase the chemical properties of soil such as pH, cation exchange capacity and nutrient availability of - B, Ca, Mo etc-. Therefore, the main purpose of this study was to evaluate the feasibility of fly ash as a soil amendment in paddy soils. Selected fly ash was mixed with bentonite and calcium hydroxide at the ratio of 80:15:5 (w/w) and manufactured as a pellet type at the size of 10 mm. Field experiments were conducted to evaluate the effects of fly ash fertilizer on the soil quality and crop growth compare to the control (no fertilizer) and, - traditional fertilizer. Results showed that soil pH and organic matter in paddy soils after applying the manufactured fly ash fertilizer were not increased compared to the other two treatments. However, the concentration of available phosphate and silicate in paddy soils were higher than those of the control and traditional fertilization. With regard to crop growth, no significant difference was observed between three different treatments. However, the content of protein in the rice grain cultivated with the fly ash fertilizer was higher than in the rice cultivated by other two treatments. Overall, fly ash fertilizer could increase the concentration of available silicate and phosphate in the paddy soil and improve the rice quality. In conclusion, fly ash can be utilized in agricultural soils as soil amendment, especially in the rice paddy soil.

Mechanical Properties of Granulated Ground Blast Furnace Slag on Blended Activator of Sulfate and Alkali (황산염 및 알칼리계의 혼합 활성화제에 대한 고로슬래그미분말의 역학적 특성)

  • Kim, Tae-Wan;Jun, Yu-Bin;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.104-111
    • /
    • 2015
  • This study shows the mechanical properties of alkali-activated slag cement (AASC) synthesized using sulfate with NaOH solution. The used sulfates were calcium sulfate ($CaSO_4$, denoted CS) and sodium sulfate ($Na_2SO_4$, denoted SS). The replacement ratio of sulfates was 2.5, 5.0, 7.5 and 10.0% by weight of slag. NaOH solution of 2M and 4M concentration was used. A sample was activated with sulfate and activated with blended activator (blending NaOH solution with sulfate) respectively. 24 mix ratios were used and the water-binder weight ratio for the test was set 0.5. This research carried out the compressive strength, flexural strength, ultrasonic pulse velocity (UPV), absorption and X-ray diffraction (XRD). In the case of samples with CS, sample with 7.5% CS, sample with 2M NaOH+5.0% CS and sample with 4M NaOH+5.0% CS showed the good performance in the strength development. In the case of samples with SS, sample with 10.0% SS, sample with 2M NaOH+7.5% SS and sample with 4M NaOH+2.5% SS obtained good performance in strength. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of samples indicated that the hydration products formed in samples were ettringite, CSH and silicate phases. In this study, it is indicated that when compared to the use of sulfate only, the use of both sulfate and NaOH solution makes mechanical properties of AASC better.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.