• Title/Summary/Keyword: Calcium powder

Search Result 432, Processing Time 0.02 seconds

Utilization of a Soluble Protein Recovered from Surimi Wastewater by Calcium Powder of Cuttle, Sepia esculents Bone (갑오징어(Sepia esculenta)갑 칼슘으로 회수한 surimi 가공폐수 단백질의 어묵소재로서 이용)

  • KIM Jin-Soo;CHO Moon-Lae;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.204-209
    • /
    • 2003
  • Utilization of soluble protein recovered from surimi wastewater using calcium powder of cuttle bone were examined. The crude ash content of the heat-induced surimi gel was increased linearly by increasing substitution ratio of recovered protein-ATC toward commercial surimi. Moisture (approximately $76\%$) and lipid $(0.2\%)$ contents were not change, but their protein contents were decreased 15.7 to $14.3\%$ depend on increasing of substitution ratio. The white index of the heat-induced surimi gel by color meter was increased up to $10\%$ of substitution ratio. There were no difference between $0\%\;and\;5\%$ substituted surimi gel in the gel strength. The sensory score on white index and texture of the heat-induced surimi gel did not change in 0 to $10\%$ as a substitution ratio of recovered protein-ATC toward commercial surimi, while decreased in more $15\%.$ The optimal substitution ratio of recovered protein-ATC as a bulking agent was $10\%.$ The heat-induced surimi gel prepared with $10\%$ substitution of recovered protein-ATC was similar to the content and composition of total amino. acids, and superior to calcium content and the ratio of calcium and phosphorus toward those of commercial surimi.

Solubility Improvement of Cuttle Bone Powder Using Organic Acids (유기산처리에 의한 갑오징어갑 분말의 가용성 개선)

  • KIM Jin-Soo;CHO Moon-LAE;HEU Min-Soo;CHO Tae-Jong;AN Hwa-Jin;CHA Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • As a pan of a study on effective use of seafood processing by-products, such as cuttle bone as a calcium source, we examined on the kind of organic acid (acetic acid and lactic acid), reaction concentration (mole ratio of calcium to mole of organic acid), reaction temperature $(20\~60^{\circ}C)$ and reaction time (6$\~$24 hours) as reaction conditions for the solubility improvement of cuttle bone powder. The high soluble cuttle bone powder was also prepared from the optimal reaction conditions and partially characterized. From the results on examination of reaction conditions, the high soluble cuttle bone powder was prepared with 0.4 in mole ratio of a calcium to mole of a acetic acid at room temperature for 12 hours, Judging from the patterns of IR and X-ray diffraction, the main component of the high soluble cuttle bone powder was presented as a form of calcium acetate, and a scanning electron micrograph showed an irregular form. The soluble calcium content in the high soluble cuttle bone powder was $5.3\%$ and it was improved about 1,380 times compared to a raw cuttle bone powder. For the effective use of the high soluble cuttle bone powder as a material for a functional improvement in processing, it should be used after the calcium treatment at room temperature for about 1 hour in tap water or distilled water. from these results, we concluded that it is possible to use the high soluble cut시e bone powder as a material for a functional improvement in processing.

Studies on the Content of fatty Acid Calcium and Magnesium of Pig s Shank According to Extraction Time by Water (추출시간에 따른 돼지 족의 지방산과 칼슘, 마그테슘 함량 변화에 관한연구)

  • 이미경;노기환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.1
    • /
    • pp.61-64
    • /
    • 1990
  • The influence of extraction time on the fatty acid profile and the contents of calcium and magnesium in pig's shank were examined. The 9 kinds of fatty acid were identified in water extracts from pig's shank by GLC. The profiles of fatty acids from different extraction were similer to each other,. The content of linolenic acid was increased after two-hours extraction however the amounts of MUFA, PUFA and p/s ratio were decreased by the longer extraction time. The amount of calcium was 124.7mg% in raw materials but water extracts and bone powder samples showed higher values. in case of magnesium it was 138.4mg% in raw materials, but the extracts showed lower amount and bone powder exhibited higher values.

  • PDF

Effects of Water-Soluble Calcium Supplements Made from Eggshells and Oyster Shells on the Calcium Metabolism of Growing Rats

  • Jang, Se-Young;Jeong, Yong-Jin;Kwon, Taeg-Kyu;Seo, Ji-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • This study investigated the effects of water-soluble calcium supplements manufactured with eggshells and oyster shells on growing rats. The aim was to review the potential use of food wastes as materials for water-soluble calcium supplements as compared to water-soluble calcium supplements made from imported seaweed powder. When experimental animals were administered three types of water-soluble calcium supplements orally for six weeks, the serum calcium level of the seaweed calcium supplement group were significantly higher than that of eggshell or oyster shell-derived calcium, but blood alkali phosphatase activity, osteocalcin and urine crosslink levels were not different in the three types of calcium supplements. Bone mineral density and bone mineral content in spine, femur and tibia also were not significantly different among the groups. However, when considering body weight of each group, bone mineral density and bone mineral content of the femur were significantly higher in the oyster shell calcium supplement group. These results suggest that at least on a short-term basis, the effect of calcium supplements prepared from eggshell and oyster shell are similar to the effects of seaweed calcium supplements.

The Effect of Excess Samarium Oxide on the Preparation of Sm-Fe Alloy Powder by Reduction-diffusion Method (환원-확산법에 의한 Sm-Fe 합금분말 제조시 Sm2O3 첨가량의 영향)

  • Kwak, Hun;Lee, Jung-Goo;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.336-341
    • /
    • 2009
  • To produce alloy powders with only Sm$_2$Fe$_{17}$ single phase by reduction-diffusion (R-D) method, the effect of excess samarium oxide on the preparation of Sm-Fe alloy powder during R-D heat treatment was studied. The quantity of samarium oxide was varied from 5% to 50% whereas iron and calcium were taken 0% and 200% in excess of chemical equivalent, respectively. The pellet type mixture of samarium, iron powders and calcium granulars was subjected to heat treatment at 1100$^{\circ}C$ for 5 hours. The R-D treated pellet was moved into deionized water and agitated to separate Sm-Fe alloy powders. After washing them in deionized water several times, the powders were washed with acetic acid to remove the undesired reaction products such as CaO. By these washing and acid cleaning treatment, only 0.03 wt% calcium remained in Sm-Fe alloy powders. It was also confirmed that the content of unreacted $\alpha$-Fe in Sm$_2$Fe$_{17}$ matrix gradually decreased as the percentage of samarium oxide is increased. However, there was no significant change above 40% excess samarium oxide.

A Study on Development of a Liner Manufactured by Mine Wastes and Polymer (광산폐기물과 폴리머를 이용한 Liner 개발에 관한 연구)

  • 진호일
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Development of an effective liner by utilization of the tailings frm the Imcheon mine and polymer has been tried. The tailings piled in the Imcheon mine, whose true specific gravity is about 2.86, are composed mainly of quartz, alkali-feldspar, muscovite and pyrite, and mostly (93.7% in volume) coarser than sand grain size (50${\mu}{\textrm}{m}$). Strength, leaching and permeability tests have been performed on the test specimens of polymer concrete manufactured with various mixing proportions of tailings, unsaturated polyester resins(UPR), calcium carbonates, stone powder sludges and granite soils. Polymer concrete specimens with stone powder sludges or granite soils as fillers and aggregates indicate 2.5 to 3 fold higher flexural and compressive strengths and lower permeabilities than those with calcium carbonates, which shows their usability as a waterproof liner. Also, the polymer concrete liner with stone powder sludge fillers is more advisable in aspects of utilization of waste sludges than that with other fillers.

  • PDF

A Study on the Bending and Compressive Strength of Mortar using Waste Calcium Material as a Filling Material (폐칼슘 재료를 채움재로 사용한 모르타르의 휨·압축강도에 관한 연구)

  • Kim, Han-Nah;Kim, Bong Joo;Jung, Ui In;Seo, Eun-Seok;Hong, Sang Hun;Shin, Dong Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.64-65
    • /
    • 2020
  • Oyster shells are difficult to grind, while oyster shell powders have coarse and coarse grains, whereas egg shell powder, the same high calcium material, has small and soft particles and has opposing properties. In order to study the change in flexural and compressive strength by designing different mixing ratios using 50% of oyster shell powder and egg shell powder as a filling material. As a result of the experiment, there is almost no difference in the result.

  • PDF

Low-Cost Cultivation and Sporulation of Alkaliphilic Bacillus sp. Strain AK13 for Self-Healing Concrete

  • Hong, Minyoung;Kim, Wonjae;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1982-1992
    • /
    • 2019
  • The alkaliphilic, calcium carbonate precipitating Bacillus sp. strain AK13 can be utilized in concrete for self-repairing. A statistical experimental design was used to develop an economical medium for its mass cultivation and sporulation. Two types of screening experiment were first conducted to identify substrates that promote the growth of the AK13 strain: the first followed a one-factor-at-a-time factorial design and the second a two-level full factorial design. Based on these screening experiments, barley malt powder and mixed grain powder were identified as the substrates that most effectively promoted the growth of the AK13 strain from a range of 21 agricultural products and by-products. A quadratic statistical model was then constructed using a central composite design and the concentration of the two substrates was optimized. The estimated growth and sporulation of Bacillus sp. strain AK13 in the proposed medium were 3.08 ± 0.38 × 108 and 1.25 ± 0.12 × 108 CFU/ml, respectively, which meant that the proposed low-cost medium was approximately 45 times more effective than the commercial medium in terms of the number of cultivatable bacteria per unit price. The spores were then powdered via a spray-drying process to produce a spore powder with a spore count of 2.0 ± 0.7 × 109 CFU/g. The AK13 spore powder was mixed with cement paste, yeast extract, calcium lactate, and water. The yeast extract and calcium lactate generated the highest CFU/ml for AK13 at a 0.4:0.4 ratio compared to 0.4:0.25 (the original ratio of the B4 medium) and 0.4:0.8. Twenty-eight days after the spores were mixed into the mortar, the number of vegetative cells and spores of the AK13 strain had reached 106 CFU/g within the mortar. Cracks in the mortar under 0.29 mm were healed in 14 days. Calcium carbonate precipitation was observed on the crack surface. The mortar containing the spore powder was thus concluded to be effective in terms of healing micro-cracks.

Preparation of Calcium Peroxide Originated from Oyster Shell Powder and Oxygen Releasing Ability (패각 분말기반 과산화칼슘 제조와 산소 유리 특성)

  • Yoo, Gilsun;An, Jieun;Cho, Daechul;Kwon, Sung Hyun
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.763-770
    • /
    • 2018
  • Bioremediation in situ is heavily dependent on the oxygenic environment which would privide the dwelling microorganism with sufficient oxygen. The situation could be easily resolved with supply of an Oxygen Releasing Compound (ORC). In this paper we prepared that sort of material out of oyster shell powder (mostly calcium carbonate) that prevails every shore areas of the country. We used two different oxidizing methods in the first step of the whole manufacturing process-conventional heating in a furnace and an ultrasound generator to obtain calcium oxide. Then that calcium oxide was further oxidized into calcium peroxide which may release oxygen under a moisturized condition. The oxygen releasing experiments were run to test the performance of our products, and to determine the gas kinetics during the experiments. Interestingly, calcium peroxide derived from ultrasound treatment was much more energy-effective as ORC than that from furnace heating although the heat derived process was better than that of ultrasound in terms of oxygen content and its releasing rate. We also found that most of the data collected from the gas releasing experiments fairly supported an ordinary $1^{st}$ order kinetics to oxygen concentration, which shaped a sharp discharge of oxygen at the very early moment of each test.

Carbonation Mechanism of Hydrated Cement Paste by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 시멘트 페이스트의 중성화 반응 메커니즘)

  • Park, Jeong-Won;Kim, Ji-Hyun;Lee, Min-Hee;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, needs for utilization of recycled aggregate have been increasing. However, its utilization has been limited due to its high alkalinity, which mostly came from the unremoved cement paste particles that were attached at the surface of recycled aggregate. Various efforts has been made to reduce its alkalinity by using $CO_2$, but currently available methods that uses $CO_2$ generate the problem with pH recovery. Considering the fact that supercritical $CO_2$ ($scCO_2$) can provide more rapid carbonation of cement paste than by normal $CO_2$, $scCO_2$ was utilized in this work. The reaction between $scCO_2$ and hydrated cement paste has been systematically evaluated. According to the results, it was found that powder type showed higher carbonation compared to that of cube specimens. It seems the carbonation by $scCO_2$ has occurred only at the surface of the specimen, and therefore still showed some amount of $Ca(OH)_2$ calcium aluminates after reaction with $scCO_2$. With powder type specimen, all $Ca(OH)_2$ was converted into $CaCO_3$. Moreover, additional calcium that came from both calcium aluminate hydrates and calcium silicate hydrates reacted with $scCO_2$ to form $CaCO_3$. After carbonation with $scCO_2$, the powder type specimen did not show pH recovery, but cube specimens did show due to the presence of portlandite.