• Title/Summary/Keyword: Calcium potentials

Search Result 43, Processing Time 0.026 seconds

The Effects of 1, 4-Dihydropyridine Calcium Antagonists on the Normal and Ca-dependent, Slow Channel Mediated Action Potentials in the Guinea Pig's Papillary Muscle (1, 4-Dihydropyridine 칼슘길항제가 유두근의 정상활동전압 및 Ca-dependent, Slow Channel Mediated Action Potential에 미치는 영향)

  • Kim, Min-Hyung;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.207-218
    • /
    • 1988
  • Effects of 1, 4-dihydropyridine compounds, such as nifedipine, nisoldipine, nitrendipine, and nimodipine which were calcium antagonists on the normal and Ca-dependent, slow channel mediated action potentials in the guinea pig's papillary muscle were investigated. The glass microelectrode was impaled into a papillary muscle cell for measurements of potential changes with the simultaneous tracing of isometric contraction. The concentration of Ca antagonists were 1 mg/l (nifedipine and nisoldipine), 2 mg/l (nitrendipine and nimodipine), which showed the maximal inhibition of isometric contraction (above 90%) and simultaneous effects on the normal action potentials and only the halves of those concentrations were sufficient to observe the effects on the calcium action potentials. The data for analysis were only chosen when the microelectrode was maintained in a cell throughout the experiments. 1, 4-Dihydropyridine compounds decreased the action potential duration but did not affect the resting membrane potential, overshoot, and upstroke velocity of the normal action potentials with the decrease in the isometric contraction. And with the decrease in the area and amplitude of isometric contraction, the area, amplitude, upstroke velocity and duration of Ca action potential was decreased. But the differences in the effects of the Ca antagonists were not observed. Therefore it is inferred that the changes in normal and Ca action potential induced by the 1, 4-dihydropyridine compounds with a common chemical structure would be caused by the slow inward Ca-current, not by a fast Na-current.

  • PDF

Mineralization-inducing potentials of calcium silicate-based pulp capping materials in human dental pulp cells

  • Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • Background: This study was performed to provide a long-term bacterial seal through the formation of reparative dentin bridge, calcium silicate-based pulp capping materials have been used at sites of pulpal exposure. The aim of this study was to evaluate the mineralization-inducing potentials of calcium silicate-based pulp capping materials (ProRoot MTA [PR], Biodentine [BD], and TheraCal LC [TC]) in human dental pulp cells (HDPCs). Methods: Specimens of test materials were placed in deionized water for various incubation times to measure the pH variation and the concentration of calcium released. The morphology of HDPCs cultured on the specimens was examined using a confocal laser scanning microscope (CLSM). Alizarin red S staining and alkaline phosphatase assays were used to evaluate mineralization-inducing potentials of the capping materials. Results: BD showed the highest calcium release in all test periods, followed by PR and TC. (p<0.05). All experimental groups showed high alkalinity after 1 day, except at 14 days. BD showed the highest cell viability compared with PR and TC after 1 and 3 days, while TC showed the lowest value (p<0.05). The CLSM analysis showed that cells were well adhered and expressed actin filaments for all pulp capping materials. Mineralization by PR and BD groups was higher than that by TC group based on alizarin red S staining. BD showed significantly higher alkaline phosphatase activity than PR and TC, while TC showed the lowest value (p<0.05). Conclusion: Within the limitations of the in vitro study, BD had higher mineralization-inducing potential than PR and TC.

Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes (심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할)

  • Park, Choon-ok;Kim, Yang-mi;Haan, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

Comparison of Membrane Currents in Xenopus Oocytes in Response to Injection of Calcium Influx Factor (CIF) and Depletion of Intracellular Calcium Stores

  • Kim, Hak-Yong;Hanley, Michael R.
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.202-207
    • /
    • 2000
  • The depletion of intracellular calcium stores by thapsigargin treatment evoked extracellular calcium-dependent membrane currents in Xenopus laevis oocytes. These currents have been compared to those evoked by microinjection of a calcium influx factor (CIF) purified from Jurkat T lymphocytes. The membrane currents elicited by thapsigargin treatment (peak current, $163{\pm}60$ nA) or CIF injection (peak current, $897{\pm}188$ nA) were both dependent on calcium entry, based on their eradication by the removal of extracellular calcium. The currents were, in both cases, attributed primarily to well-characterized $Ca^{2+}-dependent$ $Cl^-$ currents, based on their similar reversal potentials (-24 mV vs. -28 mV) and their inhibition by niflumic acid (a $Cl^-$ channel blocker). Currents induced by either thapsigargin treatment or CIF injection exhibited an identical pattern of inhibitory sensitivity to a panel of lanthanides, suggesting that thapsigargin treatment or CIF injection evoked $Cl^-$ currents by stimulating calcium influx through pharmacologically identical calcium channels. These results indicate that CIF acts on the same calcium entry pathway activated by the depletion of calcium stores and most lanthanides are novel pharmacological tools for the study of calcium entry in Xenopus oocytes.

  • PDF

Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

  • Jiao, Han-Yi;Kim, Dong Hyun;Ki, Jung Suk;Ryu, Kwon Ho;Choi, Seok;Jun, Jae Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • Lubiprostone is a chloride ($Cl^-$) channel activator derived from prostaglandin $E_1$ and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid $EP_1$, $EP_2$, $EP_3$, and $EP_4$ antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [$K^+$] channel blocker) and apamin (a calcium [$Ca^{2+}$]-dependent $K^+$ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive $K^+$ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive $K^+$ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive $K^+$ channel through a prostanoid EP receptor-independent mechanism.

Ultradian Rhythms in the Hypothalamic Arcuate Nucleus Kisspeptin Neurons and Developmental Processes

  • Kim, Doyeon;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.600-606
    • /
    • 2020
  • Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.

A study on the Structure of (62-x)CaO·38Al2O3 ·xBaO Glasses by Molecular Dynamics Simulation (분자동력학법에 의한(62-x)CaO·38Al2O3 ·xBaO 유리의 구조 분석)

  • Lee, Seong-Joo;Kang, Eun-Tne
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.175-181
    • /
    • 2007
  • Molecular dynamics simulation (MD) of $(62-x)CaO{\cdot}38Al_{2}O_{3}{\cdot}xBaO$ glasses has been carried out using empirical potentials with the covalent term. The simulations closely reproduce the total neutron correlation functions of glass with 5 mol% BaO and physical properties of these glasses such as elastic constants. For these glasses, aluminum is tetrahedrally coordinated by oxygen, but there is a part of five-fold and six-fold coordination of aluminum. There are no major changes to the mid-range structure of glass, as barium is substituted for calcium. To predict the barium coordination number, we have used the bond valence (BV) theory and also compared the results of simulation with Bond valence. The coordination number for oxygen around barium atoms is close to 8 and the average distance of barium and oxygen is nearly 2.80 A. The viscosity of these glasses increases with the content of barium oxide substituted for calcium oxide.

The Characterization of the Increase of Membrane Conductance after Depolarization in Single Rat Adrenal Chromaffin Cells

  • Lim, Won-Il;Kim, Sang-Jeong;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.95-100
    • /
    • 1998
  • The conductance change evoked by step depolarization was studied in primarily cultured rat adrenal chromaffin cells using patch-clamp and capacitance measurement techniques. When we applied a depolarizing pulse to a chromaffin cell, the inward calcium current was followed by an outward current and depolarization-induced exocytosis was accompanied by an increase in conductance trace. The slow inward tail current which has the same time course as the conductance change was observed in current recording. The activation of slow tail current was calcium-dependent. Reversal potentials agreed with Nernst equation assuming relative permeability of $Cs^+\;to\;K^+$ is 0.095. The outward current and tail current were blocked by apamin (200 nM) and d-tubocurarine (2 mM). The conductance change was blocked by apamin and did not affect membrane capacitance recording. We confirmed that conductance change after depolarization comes from the activation of the SK channel and can be blocked by application of the SK channel blockers. Consequently, it is necessary to consider blocking of the SK channel during membrane capacitance recording.

  • PDF

Effects of calcium silicate cements on neuronal conductivity

  • Derya Deniz-Sungur;Mehmet Ali Onur;Esin Akbay;Gamze Tan;Fugen Dagli-Comert;Taner Cem Sayin
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2022
  • Objectives: This study evaluated alterations in neuronal conductivity related to calcium silicate cements (CSCs) by investigating compound action potentials (cAPs) in rat sciatic nerves. Materials and Methods: Sciatic nerves were placed in a Tyrode bath and cAPs were recorded before, during, and after the application of test materials for 60-minute control, application, and recovery measurements, respectively. Freshly prepared ProRoot MTA, MTA Angelus, Biodentine, Endosequence RRM-Putty, BioAggregate, and RetroMTA were directly applied onto the nerves. Biopac LabPro version 3.7 was used to record and analyze cAPs. The data were statistically analyzed. Results: None of the CSCs totally blocked cAPs. RetroMTA, Biodentine, and MTA Angelus caused no significant alteration in cAPs (p > 0.05). Significantly lower cAPs were observed in recovery measurements for BioAggregate than in the control condition (p < 0.05). ProRoot MTA significantly but transiently reduced cAPs in the application period compared to the control period (p < 0.05). Endosequence RRM-Putty significantly reduced cAPs. Conclusions: Various CSCs may alter cAPs to some extent, but none of the CSCs irreversibly blocked them. The usage of fast-setting CSCs during apexification or regeneration of immature teeth seems safer than slow-setting CSCs due to their more favorable neuronal effects.

After Contraction in Isolated Cardiac Muscle (심룡근(心朧筋)의 반복수축현상(反復收縮現象)에 관(關)하여)

  • Ryo, Ung-Yun;Brooks, Chandler Mcc.
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 1967
  • Present paper is attempted to introduce the phenomenon of 'after contraction' in isolated cardiac-muscle. Papillary muscles were removed from cat right ventricle and were used as a preparation. The muscle strip was Placed in tissue bath which is kept in steady temperature of around $25^{\circ}C$ and was perfuced by Tyrode solution, saturated with 95% $O_2$ and 5% $CO_2.$ under the condition of high calcium (8.2-10.0 mM/l), low sodium (72.4-70.0 mM/l) perfusion with the administration of epinephrine (1-2 mg/l) into tile tissue bath normally triggered muscle contraction was followed by oscillatory, repetitive contractions - after contraction. The phenomenon of after contraction was augumented by decrease in tissue bath temperature and by increase in number of preceding beats and in driving rate. Authors were able to maintain the phenomenon in prominent and steady state giving proper experimental conditions such as fixed bath temperature (ranged from $22^{\circ}C\;to\;27^{\circ}C$), suitable driving rate (20 per minute in average) and perfusion of high calcium, loll sodium and 1-2 mg/l of epinephrine. In some preparations, the strength of after contraction (second contraction) reached up-to 80% of normally triggered contraction and five repetitive contractions were observed as largest number of after contractions. Intracellular action potential measured in the muscle which was beating regulary showing steady after contraction revealed no oscillating after potential in most parts of the muscle but in few cases oscillating changes of after potentials were detectable. In electrogram of the muscle preparation recorded by means of contact electrode prominent, oscillating after potentials were observable when the recorder was set at highest sensitivity. It still is not clear that whether after contraction is the phenomenon which corresponds to those changes in action potential, oscillating after potential, of the muscle preparation. Possible mechanism of the phenomenon of after contraction relating with after potential changes was proposed. Detailed results obtained from further studies on after contraction and concrete discussion on the phenomenon will be reported by authors.

  • PDF