• 제목/요약/키워드: Calcium imaging

검색결과 96건 처리시간 0.025초

외과적으로 확진된 이첨 대동맥 판막의 진단을 위한 심장 CT 및 경흉부 심초음파의 진단적 성능: 판막 아형 및 칼슘의 양이 미치는 효과 (Diagnostic Performance of Cardiac CT and Transthoracic Echocardiography for Detection of Surgically Confirmed Bicuspid Aortic Valve: Effect of Calcium Extent and Valve Subtypes)

  • 김정주;김성목;안중현;김지훈;최연현
    • 대한영상의학회지
    • /
    • 제84권6호
    • /
    • pp.1324-1336
    • /
    • 2023
  • 목적 이첨 대동맥 판막의 아형과 판막 석회화의 정도에 따른 심장 CT와 경흉부심초음파의 이첨 대동맥 판막 진단 능력을 비교해 보고자 한다. 대상과 방법 대동맥 판막 치환술 전 심장 CT와 경흉부 심초음파를 시행한 266명의 환자(이첨 대동맥 판막, 106명; 삼첨 대동맥 판막, 166명)를 후향적으로 포함하였다. 심장 CT를 이용하여 판막의 모양을 평가하였고, 관상동맥 칼슘 측정 CT를 이용하여 판막의 칼슘 정도를 정량화하였다. 대동맥 판막은 융합형과 2-대동맥동형 아형으로 분류하였다. 심장 CT와 경흉부 심초음파의 진단정확도는 수술 소견을 대비표준으로 하여 계산하였다. 결과 CT는 이첨 대동맥 판막을 진단함에 있어서 경흉부 심초음파보다 민감도, 음성 예측도, 정확도에서 통계적으로 유의하게 높은 값을 보여주었다(각각 p < 0.001, p < 0.001, p = 0.003). 경흉부 심초음파는 판막의 석회화가 증가할수록 민감도가 감소하는 경향을 보였다. CT와 경흉부 심초음파 간의 진단 오류율은 2-대동맥동형 아형에서 10.9%, 융합형 아형에서 28.3%였다(p = 0.044). 결론 심장 CT는 이첨 대동맥 판막을 진단함에 있어 경흉부 심초음파보다 높은 진단능을 보여주며, 특히 판막 석회화가 심하거나 융합형의 아형인 환자에서 이첨 대동맥 판막을 진단하는데 도움을 줄 수 있다.

부갑상선: 부갑상선 영상에 익숙하지 않은 영상의학과 의사들을 위한 전반적인 검토 (The Parathyroid Gland: An Overall Review of the Hidden Organ for Radiologists)

  • 김수호;신정희;한수연;김해정;김명경
    • 대한영상의학회지
    • /
    • 제85권2호
    • /
    • pp.327-344
    • /
    • 2024
  • 부갑상선은 부갑상선 호르몬(parathyroid hormone; 이하 PTH)을 생성하여 칼슘 대사를 조절하는 작은 내분비선으로 구성되어 있다. 일반적으로 갑상선 뒤에 4개의 부갑상선이 위치해 있으나 개수 또는 위치는 개인차가 있으며 4개보다 많거나 적은 경우들이 있다. 부갑상선 질환은 부갑상선 기능 장애와 관련이 있으며, 부갑상선 자체의 문제 또는 신장질환으로 인한 비정상적인 혈청 칼슘 수치로 인해 발생할 수 있다. 최근 건강검진이 보편화되면서 우연히 비정상적으로 높은 혈청 칼슘 값이 발견되어 PTH 검사, 초음파, 테크네튬-99m 세스타 미비 부갑상선 스캔, 단일광자방출단층촬영/컴퓨터단층촬영(SPECT/CT), 4차원 컴퓨터단층촬영(4D-CT), 그리고 양전자방출단층촬영/컴퓨터단층촬영(PET/CT) 등의 추가적인 검사가 시행된다. 그러나 부갑상선은 여전히 영상의학과 의사에게 익숙하지 않은 기관이다. 이 종설에서 부갑상선의 해부학, 병태생리, 영상 및 임상 소견에 대해 알아보고자 한다.

전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성 (Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag)

  • 김형주;함태규;박태웅;김태언
    • 한국지반환경공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.29-37
    • /
    • 2024
  • 본 연구는 산화칼슘 개질제로 제강슬래그를 사용하여 연약점토와 혼합 시 발생하는 화학적 성분의 변화가 수경성 및 양생시간에 따른 압축강도 발현 특성을 파악하고자 XRF시험과 SEM 촬영, 베인전단강도, 일축압축강도시험을 수행하였다. 제강슬래그로부터 용출되는 칼슘(Ca)은 점토 내 Ca 함량을 증가시키고, SiO2 및 Al2O3 성분과의 화학적 반응으로 칼슘실리카게이트 수화물 (CaO-SiO2-H2O) 반응으로 점토의 피막층이 형성되어 결정체 입자수를 증가시킨다. 따라서, 중량혼합비 Rss 30%(제강슬래그 30% + 점토 70%) 상태에서 초기 비활성영역의 베인전단강도는 4.4~18.4kN/m2로 나타났다. 활성영역의 경우 양생시간 480시간 경과 시 최대일축압축강도는 431.8kN/m2까지 증가되었으며, 이는 포졸란 반응에 의해 점토의 겉보기 점착(Attraction) 강도를 증가시킨다. 본 연구를 통해 토목현장에서 제강슬래그의 재활용을 위해 연약점토와 혼합 시 제강슬래그의 혼합율(Rss)에 따라 연약점토는 강도발현이 되므로 활용성을 높일 수 있다.

양성형 골화석증 (Benign Osteopetrosis : Report of a Case)

  • 김경아;임숙영;고광준
    • Imaging Science in Dentistry
    • /
    • 제30권1호
    • /
    • pp.80-86
    • /
    • 2000
  • A 37-year-old male with the complaint of intermittent gingival swelling and dull pain associated with the food impaction of the mandibular third molar area was referred to our department of Chonbuk National University Hospital. The dental history of the patient showed that he had extracted the maxillary left third molar without complications two years ago. Intraoral and panoramic radiographs showed diffuse increased radiopacity of the maxilla and mandible. The trabecular pattern was obliterated. Postero-anterior skull and lateral skull radiographs showed thickening of cortical bone and diffuse increased radiopacity of the skull. Additional radiographs showed similar changes in the lumbar spine, clavicles, iliac bone and femur. However, no evidence of osteomyelitis was observed clinically and radiographically. Laboratory findings showed normal values of serum calcium, phosphorus, and alkaline phosphatase. Based on the radiographic examinations and the laboratory findings, final diagnosis was made as a benign osteopetrosis.

  • PDF

Rare finding of Eustachian tube calcifications with cone-beam computed tomography

  • Syed, Ali Z.;Hawkins, Anna;Alluri, Leela Subashini;Jadallah, Buthainah;Shahid, Kiran;Landers, Michael;Assaf, Hussein M.
    • Imaging Science in Dentistry
    • /
    • 제47권4호
    • /
    • pp.275-279
    • /
    • 2017
  • Soft tissue calcification is a pathological condition in which calcium and phosphate salts are deposited in the soft tissue organic matrix. This study presents an unusual calcification noted in the cartilaginous portion of the Eustachian tube. A 67-year-old woman presented for dental treatment, specifically for implant placement, and cone-beam computed tomography (CBCT) was performed. The CBCT scan was reviewed by a board-certified oral and maxillofacial radiologist and revealed incidental findings of 2 distinct calcifications in the cartilaginous portion of the Eustachian tube. To the authors' knowledge, no previous study has reported the diagnosis of Eustachian tube calcification using CBCT. This report describes an uncommon variant of Eustachian tube calcification, which has a significant didactic value because such cases are seldom illustrated either in textbooks or in the literature. This case once again underscores the importance of having CBCT scans evaluated by a board-certified oral and maxillofacial radiologist.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis

  • Kim, Seong-Rae;Kim, Sung-Yon
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.63-67
    • /
    • 2021
  • The bed nucleus of the stria terminalis (BNST)-a key part of the extended amygdala-has been implicated in the regulation of diverse behavioral states, ranging from anxiety and reward processing to feeding behavior. Among the host of distinct types of neurons within the BNST, recent investigations employing cell type- and projection-specific circuit dissection techniques (such as optogenetics, chemogenetics, deep-brain calcium imaging, and the genetic and viral methods for targeting specific types of cells) have highlighted the key roles of glutamatergic and GABAergic neurons and their axonal projections. As anticipated from their primary roles in excitatory and inhibitory neurotransmission, these studies established that the glutamatergic and GABAergic subpopulations of the BNST oppositely regulate diverse behavioral states. At the same time, these studies have also revealed unexpected functional specificity and heterogeneity within each subpopulation. In this Minireview, we introduce the body of studies that investigated the function of glutamatergic and GABAergic BNST neurons and their circuits. We also discuss unresolved questions and future directions for a more complete understanding of the cellular diversity and functional heterogeneity within the BNST.

Lithocholic Acid Activates Mas-Related G Protein-Coupled Receptors, Contributing to Itch in Mice

  • Song, Myung-Hyun;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.38-47
    • /
    • 2022
  • The present study focused on lithocholic acid (LCA), a secondary bile acid that contributes to cholestatic pruritus. Although recent studies have found that LCA acts on MAS-related G protein-coupled receptor family member X4 (MRGPRX4) in humans, it is unclear which subtypes of MRGPRs are activated by LCA in mice since there is no precise ortholog of human MRGPRX4 in the mouse genome. Using calcium imaging, we found that LCA could activate mouse Mrgpra1 when transiently expressed in HEK293T cells. Moreover, LCA similarly activates mouse Mrgprb2. Importantly, LCA-induced responses showed dose-dependent effects through Mrgpra1 and Mrgprb2. Moreover, treatment with QWF (an antagonist of Mrgpra1 and Mrgprb2), YM254890 (Gαq inhibitor), and U73122 (an inhibitor of phospholipase C) significantly suppressed the LCA-induced responses, implying that the LCA-induced responses are indeed mediated by Mrgpra1 and Mrgprb2. Furthermore, LCA activated primary cultures of mouse sensory neurons and peritoneal mast cells, suggesting that Mrgpra1 and Mrgprb2 contribute to LCA-induced pruritus. However, acute injection of LCA did not induce noticeable differences in scratching behavior, implying that the pruritogenic role of LCA may be marginal in non-cholestatic conditions. In summary, the present study identified for the first time that LCA can activate Mrgpra1 and Mrgprb2. The current findings provide further insight into the similarities and differences between human and mouse MRGPR families, paving a way to understand the complex roles of these pruriceptors.

Clinical Implications of Focal Mineral Deposition in the Globus Pallidus on CT and Quantitative Susceptibility Mapping of MRI

  • Hyojin Kim;Jinhee Jang;Junghwa Kang;Seungun Jang;Yoonho Nam;Yangsean Choi;Na-young Shin;Kook-Jin Ahn;Bum-soo Kim
    • Korean Journal of Radiology
    • /
    • 제23권7호
    • /
    • pp.742-751
    • /
    • 2022
  • Objective: To assess focal mineral deposition in the globus pallidus (GP) by CT and quantitative susceptibility mapping (QSM) of MRI scans and evaluate its clinical significance, particularly cerebrovascular degeneration. Materials and Methods: This study included 105 patients (66.1 ± 13.7 years; 40 male and 65 female) who underwent both CT and MRI with available QSM data between January 2017 and December 2019. The presence of focal mineral deposition in the GP on QSM (GPQSM) and CT (GPCT) was assessed visually using a three-point scale. Cerebrovascular risk factors and small vessel disease (SVD) imaging markers were also assessed. The clinical and radiological findings were compared between the different grades of GPQSM and GPCT. The relationship between GP grades and cerebrovascular risk factors and SVD imaging markers was assessed using univariable and multivariable linear regression analyses. Results: GPCT and GPQSM were significantly associated (p < 0.001) but were not identical. Higher GPCT and GPQSM grades showed smaller gray matter (p = 0.030 and p = 0.025, respectively) and white matter (p = 0.013 and p = 0.019, respectively) volumes, as well as larger GP volumes (p < 0.001 for both). Among SVD markers, white matter hyperintensity was significantly associated with GPCT (p = 0.006) and brain atrophy was significantly associated with GPQSM (p = 0.032) in at univariable analysis. In multivariable analysis, the normalized volume of the GP was independently positively associated with GPCT (p < 0.001) and GPQSM (p = 0.002), while the normalized volume of the GM was independently negatively associated with GPCT (p = 0.040) and GPQSM (p = 0.035). Conclusion: Focal mineral deposition in the GP on CT and QSM might be a potential imaging marker of cerebral vascular degeneration. Both were associated with increased GP volume.

Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons

  • Han, Rafael Taeho;Kim, Han-Byul;Kim, Young-Beom;Choi, Kyungmin;Park, Gi Yeon;Lee, Pa Reum;Lee, JaeHee;Kim, Hye young;Park, Chul-Kyu;Kang, Youngnam;Oh, Seog Bae;Na, Heung Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.173-182
    • /
    • 2018
  • Recent studies have provided several lines of evidence that peripheral administration of oxytocin induces analgesia in human and rodents. However, the exact underlying mechanism of analgesia still remains elusive. In the present study, we aimed to identify which receptor could mediate the analgesic effect of intraperitoneal injection of oxytocin and its cellular mechanisms in thermal pain behavior. We found that oxytocin-induced analgesia could be reversed by $d(CH_2)_5[Tyr(Me)^2,Dab^5]$ AVP, a vasopressin-1a (V1a) receptor antagonist, but not by $desGly-NH_2-d(CH_2)_5[D-Tyr^2,Thr^4]OVT$, an oxytocin receptor antagonist. Single cell RT-PCR analysis revealed that V1a receptor, compared to oxytocin, vasopressin-1b and vasopressin-2 receptors, was more profoundly expressed in dorsal root ganglion (DRG) neurons and the expression of V1a receptor was predominant in transient receptor potential vanilloid 1 (TRPV1)-expressing DRG neurons. Fura-2 based calcium imaging experiments showed that capsaicin-induced calcium transient was significantly inhibited by oxytocin and that such inhibition was reversed by V1a receptor antagonist. Additionally, whole cell patch clamp recording demonstrated that oxytocin significantly increased potassium conductance via V1a receptor in DRG neurons. Taken together, our findings suggest that analgesic effects produced by peripheral administration of oxytocin were attributable to the activation of V1a receptor, resulting in reduction of TRPV1 activity and enhancement of potassium conductance in DRG neurons.