DOI QR코드

DOI QR Code

Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis

  • Kim, Seong-Rae (Institute of Molecular Biology and Genetics, Department of Chemistry, Seoul National University) ;
  • Kim, Sung-Yon (Institute of Molecular Biology and Genetics, Department of Chemistry, Seoul National University)
  • Received : 2021.01.10
  • Accepted : 2021.01.27
  • Published : 2021.02.28

Abstract

The bed nucleus of the stria terminalis (BNST)-a key part of the extended amygdala-has been implicated in the regulation of diverse behavioral states, ranging from anxiety and reward processing to feeding behavior. Among the host of distinct types of neurons within the BNST, recent investigations employing cell type- and projection-specific circuit dissection techniques (such as optogenetics, chemogenetics, deep-brain calcium imaging, and the genetic and viral methods for targeting specific types of cells) have highlighted the key roles of glutamatergic and GABAergic neurons and their axonal projections. As anticipated from their primary roles in excitatory and inhibitory neurotransmission, these studies established that the glutamatergic and GABAergic subpopulations of the BNST oppositely regulate diverse behavioral states. At the same time, these studies have also revealed unexpected functional specificity and heterogeneity within each subpopulation. In this Minireview, we introduce the body of studies that investigated the function of glutamatergic and GABAergic BNST neurons and their circuits. We also discuss unresolved questions and future directions for a more complete understanding of the cellular diversity and functional heterogeneity within the BNST.

Keywords

Acknowledgement

We are grateful to Shanti Chang and Benjamin H. Ahn for comments on the manuscript. This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1003350) and Creative-Pioneering Researchers Program of Seoul National University.

References

  1. Alheid, G.F. and Heimer, L. (1988). New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27, 1-39. https://doi.org/10.1016/0306-4522(88)90217-5
  2. Armand, E.J., Li, J., Xie, F., Luo, C., and Mukamel, E.A. (2021). Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 109, 11-26. https://doi.org/10.1016/j.neuron.2020.12.010
  3. Atasoy, D. and Sternson, S.M. (2016). Functional and anatomical dissection of feeding circuits. In Neuroendocrinology of Appetite, S.L. Dickson and J.G. Mercer, eds. (Hoboken: John Wiley & Sons), pp. 112-133.
  4. Bayless, D.W. and Shah, N.M. (2016). Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150109. https://doi.org/10.1098/rstb.2015.0109
  5. Betley, J.N., Cao, Z.F.H., Ritola, K.D., and Sternson, S.M. (2013). Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337-1350. https://doi.org/10.1016/j.cell.2013.11.002
  6. Betley, J.N. and Sternson, S.M. (2011). Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits. Hum. Gene Ther. 22, 669-677. https://doi.org/10.1089/hum.2010.204
  7. Bhatti, D.L., Luskin, A.T., Pedersen, C.E., Mulvey, B., Oden-Brunson, H., Kimbell, K., Sawyer, A., Gereau, R.W., Dougherty, J.D., and Bruchas, M.R. (2020). Extended amygdala-parabrachial circuits alter threat assessment to regulate feeding. BioRxiv, https://doi.org/10.1101/2020.03.03.975193
  8. Bota, M., Sporns, O., and Swanson, L.W. (2012). Neuroinformatics analysis of molecular expression patterns and neuron populations in gray matter regions: the rat BST as a rich exemplar. Brain Res. 1450, 174-193. https://doi.org/10.1016/j.brainres.2012.02.034
  9. Bromberg-Martin, E.S., Matsumoto, M., and Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815-834. https://doi.org/10.1016/j.neuron.2010.11.022
  10. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300. https://doi.org/10.1038/nature12354
  11. Crestani, C.C., Alves, F.H., Gomes, F.V., Resstel, L.B., Correa, F.M., and Herman, J.P. (2013). Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr. Neuropharmacol. 11, 141-159. https://doi.org/10.2174/1570159X11311020002
  12. Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238-242. https://doi.org/10.1038/nature11846
  13. Daniel, S.E. and Rainnie, D.G. (2016). Stress modulation of opposing circuits in the bed nucleus of the stria terminalis. Neuropsychopharmacology 41, 103-125. https://doi.org/10.1038/npp.2015.178
  14. Davis, M., Walker, D.L., Miles, L., and Grillon, C. (2010). Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35, 105-135. https://doi.org/10.1038/npp.2009.109
  15. Deisseroth, K. (2011). Optogenetics. Nat. Methods 8, 26-29. https://doi.org/10.1038/nmeth.f.324
  16. Dong, H.W., Petrovich, G.D., and Swanson, L.W. (2001). Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res. Brain Res. Rev. 38, 192-246. https://doi.org/10.1016/S0165-0173(01)00079-0
  17. Dong, H.W. and Swanson, L.W. (2004). Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J. Comp. Neurol. 468, 277-298. https://doi.org/10.1002/cne.10949
  18. Flanigan, M.E. and Kash, T.L. (2020). Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur. J. Neurosci. 2020 Oct 2 [Epub]. https://doi.org/10.1111/ejn.14991
  19. Fox, A.S., Oler, J.A., Tromp, D.P.M., Fudge, J.L., and Kalin, N.H. (2015). Extending the amygdala in theories of threat processing. Trends Neurosci. 38, 319-329. https://doi.org/10.1016/j.tins.2015.03.002
  20. Giardino, W.J., Eban-Rothschild, A., Christoffel, D.J., Li, S.B., Malenka, R.C., and de Lecea, L. (2018). Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat. Neurosci. 21, 1084-1095. https://doi.org/10.1038/s41593-018-0198-x
  21. Goode, T.D. and Maren, S. (2017). Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn. Mem. 24, 480-491. https://doi.org/10.1101/lm.044206.116
  22. Gunaydin, L.A., Grosenick, L., Finkelstein, J.C., Kauvar, I.V., Fenno, L.E., Adhikari, A., Lammel, S., Mirzabekov, J.J., Airan, R.D., Zalocusky, K.A., et al. (2014). Natural neural projection dynamics underlying social behavior. Cell 157, 1535-1551. https://doi.org/10.1016/j.cell.2014.05.017
  23. Gungor, N.Z. and Pare, D. (2016). Functional heterogeneity in the bed nucleus of the stria terminalis. J. Neurosci. 36, 8038-8049. https://doi.org/10.1523/JNEUROSCI.0856-16.2016
  24. Hao, S., Yang, H., Wang, X., He, Y., Xu, H., Wu, X., Pan, L., Liu, Y., Lou, H., Xu, H., et al. (2019). The lateral hypothalamic and BNST GABAergic projections to the anterior ventrolateral periaqueductal gray regulate feeding. Cell Rep. 28, 616-624.e5. https://doi.org/10.1016/j.celrep.2019.06.051
  25. Huang, J.Z. and Zeng, H. (2013). Genetic approaches to neural circuits in the mouse. Annu. Rev. Neurosci. 36, 183-215. https://doi.org/10.1146/annurev-neuro-062012-170307
  26. Janak, P.H. and Tye, K.M. (2015). From circuits to behaviour in the amygdala. Nature 517, 284-292. https://doi.org/10.1038/nature14188
  27. Jennings, J.H., Rizzi, G., Stamatakis, A.M., Ung, R.L., and Stuber, G.D. (2013a). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517-1521. https://doi.org/10.1126/science.1241812
  28. Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. (2013b). Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224-228. https://doi.org/10.1038/nature12041
  29. Ju, G. and Swanson, L.W. (1989). Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. cytoarchitecture. J. Comp. Neurol. 280, 587-602. https://doi.org/10.1002/cne.902800409
  30. Ju, G., Swanson, L.W., and Simerly, R.B. (1989). Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: II. chemoarchitecture. J. Comp. Neurol. 280, 603-621. https://doi.org/10.1002/cne.902800410
  31. Kash, T.L., Pleil, K.E., Marcinkiewcz, C.A., Lowery-Gionta, E.G., Crowley, N., Mazzone, C., Sugam, J., Hardaway, J.A., and McElligott, Z.A. (2015). Neuropeptide regulation of signaling and behavior in the BNST. Mol. Cells 38, 1-13. https://doi.org/10.14348/MOLCELLS.2015.2261
  32. Kim, D.Y., Heo, G., Kim, M., Kim, H., Jin, J.A., Kim, H.K., Jung, S., An, M., Ahn, B.H., Park, J.H., et al. (2020). A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376-380. https://doi.org/10.1038/s41586-020-2167-2
  33. Kim, S.Y., Adhikari, A., Lee, S.Y., Marshel, J.H., Kim, C.K., Mallory, C.S., Lo, M., Pak, S., Mattis, J., Lim, B.K., et al. (2013). Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219-223. https://doi.org/10.1038/nature12018
  34. Lebow, M.A. and Chen, A. (2016). Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450-463. https://doi.org/10.1038/mp.2016.1
  35. Luo, L., Callaway, E.M., and Svoboda, K. (2018). Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256-281. https://doi.org/10.1016/j.neuron.2018.03.040
  36. Luyck, K., Goode, T.D., Lee Masson, H., and Luyten, L. (2019). Distinct activity patterns of the human bed nucleus of the stria terminalis and amygdala during fear learning. Neuropsychol. Rev. 29, 181-185. https://doi.org/10.1007/s11065-018-9383-7
  37. Mazzone, C.M., Pati, D., Michaelides, M., DiBerto, J., Fox, J.H., Tipton, G., Anderson, C., Duffy, K., McKlveen, J.M., Hardaway, J.A., et al. (2018). Acute engagement of G q -mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior. Mol. Psychiatry 23, 143-153. https://doi.org/10.1038/mp.2016.218
  38. Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., Vaughn, E., Shekhar, K., Perez, J.D., Rubinstein, N.D., Hao, J., Regev, A., Dulac, C., et al. (2018). Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324. https://doi.org/10.1126/science.aau5324
  39. Nectow, A.R. and Nestler, E.J. (2020). Viral tools for neuroscience. Nat. Rev. Neurosci. 21, 669-681. https://doi.org/10.1038/s41583-020-00382-z
  40. Palmiter, R.D. (2018). The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 41, 280-293. https://doi.org/10.1016/j.tins.2018.03.007
  41. Park, H.E., Choi, D., Park, J.S., Sim, C., Park, S., Kang, S., Yim, H., Lee, M., Kim, J., Pac, J., et al. (2019). Scalable and isotropic expansion of tissues with simply tunable expansion ratio. Adv. Sci. (Weinh.) 6, 1901673.
  42. Poulin, J.F., Arbour, D., Laforest, S., and Drolet, G. (2009). Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1356-1365. https://doi.org/10.1016/j.pnpbp.2009.06.021
  43. Radley, J.J. and Johnson, S.B. (2018). Anteroventral bed nuclei of the stria terminalis neurocircuitry: towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 89, 239-249. https://doi.org/10.1016/j.psyneuen.2017.12.005
  44. Robinson, O.J., Pike, A.C., Cornwell, B., and Grillon, C. (2019). The translational neural circuitry of anxiety. J. Neurol. Neurosurg. Psychiatry 90, 1353-1360.
  45. Rodriguez-Romaguera, J., Ung, R.L., Nomura, H., Otis, J.M., Basiri, M.L., Namboodiri, V.M.K., Zhu, X., Robinson, J.E., van den Munkhof, H.E., McHenry, J.A., et al. (2020). Prepronociceptin-expressing neurons in the extended amygdala encode and promote rapid arousal responses to motivationally salient stimuli. Cell Rep. 33, 108362. https://doi.org/10.1016/j.celrep.2020.108362
  46. Rossi, M.A. and Stuber, G.D. (2018). Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42-56. https://doi.org/10.1016/j.cmet.2017.09.021
  47. Roth, B.L. (2016). DREADDs for neuroscientists. Neuron 89, 683-694. https://doi.org/10.1016/j.neuron.2016.01.040
  48. Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. Science 275, 1593-1599. https://doi.org/10.1126/science.275.5306.1593
  49. Seo, J., Choe, M., and Kim, S.Y. (2016). Clearing and labeling techniques for large-scale biological tissues. Mol. Cells 39, 439-446. https://doi.org/10.14348/MOLCELLS.2016.0088
  50. Svoboda, K. and Yasuda, R. (2006). Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823-839. https://doi.org/10.1016/j.neuron.2006.05.019
  51. Tasic, B. (2018). Single cell transcriptomics in neuroscience: cell classification and beyond. Curr. Opin. Neurobiol. 50, 242-249. https://doi.org/10.1016/j.conb.2018.04.021
  52. Ueda, H.R., Erturk, A., Chung, K., Gradinaru, V., Chedotal, A., Tomancak, P., and Keller, P.J. (2020). Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61-79. https://doi.org/10.1038/s41583-019-0250-1
  53. Vranjkovic, O., Pina, M., Kash, T.L., and Winder, D.G. (2017). The bed nucleus of the stria terminalis in drug-associated behavior and affect: a circuit-based perspective. Neuropharmacology 122, 100-106. https://doi.org/10.1016/j.neuropharm.2017.03.028
  54. Walker, D.L., Miles, L.A., and Davis, M. (2009). Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1291-1308. https://doi.org/10.1016/j.pnpbp.2009.06.022
  55. Wang, Y., Kim, J., Schmit, M.B., Cho, T.S., Fang, C., and Cai, H. (2019). A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat. Commun. 10, 2769. https://doi.org/10.1038/s41467-019-10715-x
  56. Welch, J.D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., and Macosko, E.Z. (2019). Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873-1887.e17. https://doi.org/10.1016/j.cell.2019.05.006
  57. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., and Deisseroth, K. (2011). Optogenetics in neural systems. Neuron 71, 9-34. https://doi.org/10.1016/j.neuron.2011.06.004
  58. Zeng, H. and Sanes, J.R. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530-546. https://doi.org/10.1038/nrn.2017.85
  59. Zimmerman, C.A., Leib, D.E., and Knight, Z.A. (2017). Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459-469. https://doi.org/10.1038/nrn.2017.71

Cited by

  1. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion vol.198, 2021, https://doi.org/10.1016/j.neuropharm.2021.108725
  2. Lateral hypothalamus involvement in control of stress response by bed nucleus of the stria terminalis endocannabinoid neurotransmission in male rats vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95401-z