• Title/Summary/Keyword: Calcium current$Ca^{2+}$ release

Search Result 11, Processing Time 0.023 seconds

Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium ($BK_{ca}$) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of $Ca^{2+}$ that induces $Ca^{2+}$-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective $BK_{Ca}$ channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove $Ca^{2+}$ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through $BK_{ca}$ channels, which are activated by intracellular $Ca^{2+}$ increase via activation of RyR of $Ca^{2+}$ stores.

Relaxant Effect of Spermidine on Acethylcholine and High $K^+$-induced Gastric Contractions of Guinea-Pig

  • Kim, Young-Chul;Sim, Jae-Hoon;Choi, Woong;Kim, Chan-Hyung;You, Ra-Young;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • In our previous study, we found that spermine and putrescine inhibited spontaneous and acetylcholine (ACh)-induced contractions of guinea-pig stomach via inhibition of L-type voltage- dependent calcium current ($VDCC_L$). In this study, we also studied the effect of spermidine on mechanical contractions and calcium channel current ($I_{Ba}$), and then compared its effects to those by spermine and putrescine. Spermidine inhibited spontaneous contraction of the gastric smooth muscle in a concentration-dependent manner ($IC_{50}=1.1{\pm}0.11mM$). Relationship between inhibition of contraction and calcium current by spermidine was studied using 50 mM high $K^+$-induced contraction: Spermidine (5 mM) significantly reduced high $K^+$ (50 mM)-induced contraction to 37${\pm}$4.7% of the control (p<0.05), and inhibitory effect of spermidine on $I_{Ba}$ was also observed at a wide range of test potential in current/voltage (I/V) relationship. Pre- and post-application of spermidine (5 mM) also significantly inhibited carbachol (CCh) and ACh-induced initial and phasic contractions. Finally, caffeine (10 mM)-induced contraction which is activated by $Ca^{2+}$-induced $Ca^{2+}$ release (CICR), was also inhibited by pretreatment of spermidine (5 mM). These findings suggest that spermidine inhibits spontaneous and CCh-induced contraction via inhibition of $VDCC_L$ and $Ca^{2+}$ releasing mechanism in guinea-pig stomach.

TRPC-Mediated Current Is Not Involved in Endocannabinoid-Induced Short-Term Depression in Cerebellum

  • Chang, Won-Seok;Kim, Jun;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.139-144
    • /
    • 2012
  • It has been reported that activation of metabotropic glutamate receptor 1 (mGluR1) can mediate endocannabinoid-induced short-term depression of synaptic transmission in cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse. mGluR1 has signaling pathways involved in intracellular calcium increase which may contribute to endocannabinoid release. Two major mGluR1-evoked calcium signaling pathways are known: (1) slow-kinetic inward current carried by transient receptor potential canonical (TRPC) channel which is permeable to $Ca^{2+}$; (2) $IP_3$-induced calcium release from intracellular calcium store. However, it is unclear how much each calcium source contributes to endocannabinoid signaling. Here, we investigated whether calcium influx through mGluR1-evoked TRPC channel contributes to endocannabinoid signaling in cerebellar Purkinje cells. At first, we applied SKF96365 to inhibit TRPC, which blocked endocannabinoid-induced short-term depression completely. However, an alternative TRP channel inhibitor, BTP2 did not affect endocannabinoid-induced short-term depression although it blocked mGluR1-evoked TRPC currents. Endocannabinoid signaling occurred normally even though the TRPC current was mostly blocked by BTP2. Our data imply that TRPC current does not play an important role in endocannabinoid signaling. We also suggest precaution in applying SKF96365 to inhibit TRP channels and propose BTP2 as an alternative TRPC inhibitor.

Relatoinship between Sarcoplasmic Reticular Calcium Release and $Na^+-Ca^{2+}$ Exchange in the Rat Myocardial Contraction

  • Kim, Eun-Gi;Kim, Soon-Jin;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2000
  • Suppressive role of $Na^+-Ca^{2+}$ exchange in myocardial tension generation was examined in the negative frequency-force relationship (FFR) of electric field stimulated left atria (LA) from postnatal developing rat heart and in the whole-cell clamped adult rat ventricular myocytes with high concentration of intracellular $Ca^{2+}$ buffer (14 mM EGTA). LA twitch amplitudes, which were suppressed by cyclopiazonic acid in a postnatal age-dependent manner, elicited frequency-dependent and postnatal age-dependent enhancements after $Na^+-reduced,\;Ca^{2+}-depleted$ (26 Na-0 Ca) buffer application. These enhancements were blocked by caffeine pretreatment with postnatal age-dependent intensities. In the isolated rat ventricular myocytes, stimulation with the voltage protocol roughly mimicked action potential generated a large inward current which was partially blocked by nifedipine or $Na^+$ current inhibition. 0 Ca application suppressed the inward current by $39{\pm}4%$ while the current was further suppressed after 0 Na-0 Ca application by $53{\pm}3%.$ Caffeine increased this inward current by $44{\pm}3%$ in spite of 14 mM EGTA. Finally, the $Na^+$ current-dependent fraction of the inward current was increased in a stimulation frequency-dependent manner. From these results, it is concluded that the $Ca^{2+}$ exit-mode (forward-mode) $Na^+-Ca^{2+}$ exchange suppresses the LA tension by extruding $Ca^{2+}$ out of the cell right after its release from sarcoplasmic reticulum (SR) in a frequency-dependent manner during contraction, resulting in the negative frequency-force relationship in the rat LA.

  • PDF

Calcium Current and Background Current Activation in L-triiodothyronine Loaded Ventricular Myocytes of the Rabbit

  • Han, Jin;Kim, Eui-Yong;Han, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun;Leem, Chae-Hun;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.26 no.2
    • /
    • pp.99-111
    • /
    • 1992
  • Permissive action of thyroid hormone at the level of Ca channel and responsible mechanisms underlying thyroid hormone-induced change in myocardial contractile state and $T_3-induced$ arrhythmias were investigated in rabbit ventricular or atrial myocytes using whole cell patch clamp technique. Single cells were isolated by Langendorff perfusion with collagenase. Cardiac myocytes were incubated in $low-Cl^-,$, $high-K^+$ medium containing $1_{\mu}M\;L-triiodothyronine\;(T_3)$ at $4^{\circ}C$ for 2.10 hours. The calcium currrent $(I_{Ca})$ was increased in $T_3$ loaded cells, however, the shape of current voltage curve and reverse potential did not altered. Cyclic AMP, cyclic GMP, isoprenaline and 3-isobutyl-1-methyl-xanthine increased $I_{Ca}$ in euthyroid and hyperthyroid conditions, and acetylcholine blocked the increase of $I_{Ca}\;in\;T_3$ loaded cells. The amplitude of $I_{Ca}$ was much larger after perfusing cGMP than cGMP in both conditions, whereas the degree of increase of $I_{Ca}$ was greater after perfusing cAMP than cGMP in $T_3$ loaded cells. The degree of increase of $I_{Ca}$ after perfusing isoprenaline or IBMX also was greater in $T_3$ loaded cells than in control cells. Background current induced by isoprenaline also increased in $T_3$ loaded cells. The Ca release dependent inward current was increased in amplitude but its activation and inactivation time course was not changed in $T_3$ loaded cells. Activation of Na pump current was not changed in $T_3$ loaded cells. From the above results it is suggested that thyroid hormone induced increase in the contractile state of cardiac myocytes are accompanied by augmented $I_{Ca}$ and the increase of Ca release from sarcoplasmic reticulum and the permissive action of thyroid hormone to catecholamines could induce arrhythmias through the increase of $I_{Ca}$ and background current.

  • PDF

Purinergic regulation of calcium signaling and exocytosis in rat prostate neuroendocrine cells

  • Kim, Jun-Hee;Kim, Mean-Hwan;Koh, Duk-su;Park, So-Jung;Kim, Soo-Jung;Nam, Joo-Hyun;Lee, Jee-Eun;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.54-54
    • /
    • 2003
  • Prostate gland contains neuroendocrine cells (PNECs) are playing important roles in physiological and pathophysiological processes of the prostate gland. Here, we investigated the role of purinoceptors in PNECs freshly isolated from rat ventral prostate (RPNECs) that show immunoreactivity to chromogranin A. Fura-2 ratiometry revealed that ATP evokes both fast Ca$\^$2+/ influx and store Ca$\^$2+/ release in RPNECs. A whole-cell patch clamp study demonstrated fast inactivating cationic current activated by ATP or by ${\alpha}$,${\beta}$-MeATP, which was blocked by ATP-TNP. The activation of P2X inward current was tightly associated with a sharp increase in [Ca$\^$2+/]$\sub$c/. The presence of P2X1/3 subtypes were proved by RT-PCR analysis. For the stored Ca$\^$2+/ release, ATP and UTP showed similar effects, suggesting the dominant role or P2Y2 subtypes, also confirmed by RT-PCR. Both P2X (${\alpha}$,${\beta}$-MeATP) and P2Y (UTP) stimulation induced changes in the cell morphology (initial shrinkage and blob formation on the surface) reversibly. Exocytotic membrane trafficking events were monitored with the membrane-bound fluorescent dye, FM1-43 using confocal microscopy. In spite of the similar Ca$\^$2+/ responses, UTP was far less effective in triggering exocytosis than ${\alpha}$,${\beta}$ -MeATP. Since serotonin is reportedly stored in the secretory granule of PNECs, we directly examined whether the aforementioned agonists elicit release of serotonin using carbon fiber electrode-amperometry. In accordance with the results of FM1 -43 experiments, ${\alpha}$,${\beta}$-MeATP efficiently evoke serotonin secretion while not with UTP. In summary, the P2X-mediated Ca$\^$2+/ influx plays crucial roles in the exocytosis of RPNECs. Although a global increase in [Ca$\^$2+]$\sub$c/ might be related with the morphological changes, a sharp rise of [Ca$\^$2+/]$\sub$c/ in the putative sub-plasmalemmal ‘microdomains’ might be a decisive factor for the exocytosis.

  • PDF

Effects of Crormakalim on the Release of Mediators in Hypersensitivity of Guinea pig (Cromakalim이 해명의 과민반응 매개체 유리에 미치는 영향)

  • Ro, Jai-Youl;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.263-274
    • /
    • 1993
  • Potassium $(K^+)$ channels are present in airway smooth muscle cells, and their activation results in hyperpolarization and relaxation. Because these effects may have therapeutic relevance to hypersensitivity and asthma, we examined the effect of a potassium channel activator, cromakalim (BRL 34915, CK) on the release of mediators from superfused tracheal and parenchymal strips after passive sensitization with $IgG_1$ antibody. Both tissues were superfused with CK $(2{\times}10^{-6}\;M)$ for 30 min and challenged with CK and antigen (Ox-HSA). Using monodispersed, partially purified, highly purified guinea pig lung mast cells, we also examined the effect of CK on mediator release from these cells after passive sensitization with $IgG_{1}$ antibody $({\alpha}-OA)$. Guinea pig lung mast cells were purified using enzyme digestion method, count current elutriation, and discontinuous Percoll density gradient. After CK pretreatment, passively sensitized mast cells were challenged with varying concentration of antigen (OA, immunological stimuli) or with varying concentration of calcium ionophore (CaI, non-immunological stimuli). Histamine (Hist) release was determined by spectrophotofluorometry, and leukotrienes (LT) by radioimmunoassy. CK pretreatment decreased Hist by 35% and LT release by 40% in the antigen-induced tracheal tissue after $IgG_1$ sensitization but did not decrease the contractile response. In the antigen-induced parenchymal tissue CK decreased Hist release by 25% but poorly decreased LT. Both immunologic and non-immunologic stimuli caused a dose-dependent release of Hist and LT from monodispersed, partially purified and highly purified lung mast cells. Verification of LT release was obtained by the use of 5-lipoxygenase inhibitor, A64077 (Zileuton). CK decreased Hist and LT release by 20% respectively in the OA-induced guinea pig lung mast cells after $IgG_1$ sensitization. The inhibitory effects of CK on the Hist and LT release in the Ox-HSA-induced airway smooth muscle tissues or in the OA-induced and CaI-induced mast cells after $IgG_1$ sensitization were completely blocked by TEA and GBC. These studies show that guinea pig lung mast cells seem to be an important contributor to LT release, and that CK (which has been known as an airway smooth muscle relaxant) can in part act to inhibit mediator release in the antigen-induced airway smooth muscle, and that CK may also act to inhibit mediator release in the OA-induced and CaI-induced highly purified mast cells. These results suggest that Hist and LT release evoked by mast cell activation might in part be associated with $K{^+}4 channel activity.

  • PDF

The Influence of Several Drugs Affecting $Ca^{2+}$ Influx on Frequency-tension Curve of Rat Left Atrium (쥐의 좌심방에서 세포막을 통한 $Ca^{2+}\;Flux$에 영향을 주는 약물이 자극빈도-장력 곡선에 미치는 영향)

  • Kim, Chan-Yun;Ahn, Sok-Kyun;Suh, Chang-Kook;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.329-337
    • /
    • 1989
  • Cardiac muscles show stimulation frequency-dependent tension changes i.e. Bowditch phenomenon and Woodworth phenomenon, the former is an increase of tension with the increase of stimulation frequency, whereas the latter is an increase of tension with a decrease of stimulation frequency. Bowditch phenomenon is seen in the range of frequency 1.0 cps and above, and Woodworth phenomenon below the frequency 1.0 cps in the most of mammalian cardiac atrium. To throw some light on the possible mechanism of both phenomena in rat atrium, influences of drugs affecting $Ca^{2+}$ influx through the plasma membrane $(verapamil,\;La^{3+},\;norepinephrine)$ and $Ca^{2+}$ release from sarcoplasmic reticulum (SR) on frequency-tension curve were studied. The results obtained are summarized as follows: 1) At low temperature $(27.5^{\circ}C)$, both Bowditch and Woodworth phenomenon were demonstrated. But Bowditch phenomenon disappeared at the temperature above $(32.5^{\circ}C)$. 2) At $(27.5^{\circ}C)$, in the presence of verapamil, a $Ca^{2+}$ channel blocker, a time course of change in the frequency-tension was studied. It was found that Bowditch phenomenon was affected before the Woodworth phenomenon, then the former was completely disappeared. At $(32.5^{\circ}C)$, where no Bow-ditch is seen in normal atrial muscle, Bowditch phenomenon was reappeared by an administration of norepinephrine suggesting again that slow inward current of such as $Ca^{2+}$ channel is closely related to Bowditch phenomenon. 3) At $27.5^{\circ}C$, in the presence of $La^{3+}$, although tensions were decreased at all stimulation frequencies, Bowditch and Woodworth phenomenon were still demonstrated. However in the presence of both $La^{3+}$ and verapamil, Bowditch phenomena was disappeared suggesting that $La^{3+}$ is less effective in blocking $Ca^{2+}$ channel than verapamil. 4) At $27.5^{\circ}C$, in the presence of ryanodine, an inhibitor of calcium release from SR, Woodworth phenomenon was disappeared, which was consistent with previous reports of others, suggesting that $Ca^{2+}$ release from SR is closely related to Woodworth phenomenon. From the above findings, it may be concluded that Bowditch phenomenon is dependent on the magnitude of $Ca^{2+}$ influx through slow channel and Woodworth phenomenon is dependent on the amount of $Ca^{2+}$ stored in SR.

  • PDF

Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa;Cho, Eui-Sic
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type $Ca^{2+}$ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type $Ca^{2+}$ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM $Ba^{2+}$ as a charge carrier. Cholic acid (CA, $10^{-6}M$) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type $Ca^{2+}$ channel, which appeared to be due to an increase in (no activity) sweeps. For example, the proportion of sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type $Ca^{2+}$ channel gating at a concentration as low as $10^{-6}M$. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type $Ca^{2+}$ channel function may be beneficial against overexcitation of the synapses.

Development of a Virus Concentration Method and its Application for the Detection of Noroviruses in Drinking Water in China

  • Liu, Junyi;Wu, Qingping;Kou, Xiaoxia
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.48-52
    • /
    • 2007
  • A new procedure for the concentration of nonoviruses from water samples has been developed. This procedure (calcium flocculation-citrate dissolution method) uses the following steps: virus flocculation formed by treatment with 1 M $CaCl_2$ and 1 M $Na_2HPO_4$, virus release by sodium citrate dissolution (0.3 M Na citrate, pH 3.5), and virus re-concentration by ultrafiltration. When reverse transcription (RT)-PCR was performed after the procedure, the overall detection sensitivity for seeded noroviruses in a one liter drinking water sample was as low as 1 RT-PCR unit, which is equal to a $10^{-6}$ dilution of the virus sample. This approach showed at least a 5-fold-higher sensitivity than the current method with its three steps of adsorption-elution-concentration. The newly developed procedure was used to test different brands of bottled drinking water from China for putative contamination with noroviruses. A total of 144 samples were analyzed; all of the samples were negative for norovirus specific nucleic acids.