• Title/Summary/Keyword: Calcium ammonium nitrate

Search Result 49, Processing Time 0.022 seconds

Preparation of Calcium Carbonate with High Purity by using Ammonium Chloride Process and Ammonium Nitrate Process (Ammonium Chloride Process 및 Ammonium Nitrate Process를 이용한 고순도 탄산칼슘의 제조)

  • Kang Mee-Sook;Soh Gowan-Soon;Shin Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.4
    • /
    • pp.203-208
    • /
    • 2004
  • The shells of Anadarac tegillarca granosa, Crassostrea gigas, Crassostrea nippona, and Patinopecten yessoensis were used for preparation of calcium carbonate with high purity. Calcium content in ash of shell was the highest $64.9\%$ in Anadarac tegillarca granosa ashed for 5 hr at $900^{\circ}C$, and followed as Patinopecten yessoensis $62.5\%$, Crassostrea gigas $62.4\%$, and Crassostrea nippona $61.5\%$. Whiteness of ash was the highest 81.6-85.8 in Patinopecten yessoensis shell. Calcium contents in calcium carbonates made with shells of Anadarac tegillarca granosa by using ammonium chloride process (ACP) and ammonium nitrate process (ANP) were higher $40.03-40.04\%$ than $39.92\%$ in Anadarac tegillarca granosa ash. Calcium content was the highest $40.04\%$ in pH adjusted calcium carbonate prepared by using ANP. Whiteness of calcium carbonate prepared by using ACP and ANP was the level of 101.0-101.5. Therefore, we estimated that the calcium carbonate made by using ACP and ANP could be used potentiality as a food additive for calcium supplement.

Effects of Urea, Ammonium Nitrate and Calcium Silicate on the Absorption, Translocation of Potassium and Yield of Chinese Cabbage (Brassica Perkinnensis, Var. Samjin) (요소, 질산암모늄 및 규회석분말이 칼리의 흡수 및 배추의 수량에 미친 영향)

  • Oh, Wang-Keun;Kim, Jae-Young;Kim, Sung-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.337-340
    • /
    • 1987
  • This experiment was conducted on relatively acid sandy loam soil at Choong-ju campus, Kon-kuk University aimed at clarifying the influence of urea and ammonium nitrate on the effect of potassium to Chinese cabbage in soils either limed or unlimed with calcium silicate. The results are summarized as follows: a. Calcium silicate application enhanced cabbage growth and under this condition, the difference in effect of urea and ammonium nitrate can hardly be observed. b. Without calcium silicate application, the response of Chinese cabbage to ammonium nitrate was more distinctive than that to urea. This was partially attributable to the greater use of soil born potassium at ammonium nitrate treatment. c. Added potassium was not only affective in increasing cabbage yield but also contributed in improving quality of cabbage by producing greater edible portion of the cabbage. Such K effect was particularly pronounced on the acid soil where calcium silicate application was neglected. d. Potassium was easily translocated from outer leaves to inner leaves and thus, the concentration of K content in outer leaves played as a limiting factor of cabbage yield. Less than 20 me/100gr of K content in harvested dried outer leaves resulted in a linear reduction of cabbage yield.

  • PDF

Purity Improvement of Calcium Lactate and Calcium Citrate Prepared with Shell of Anadarac tegillarca granosa (꼬막 패각으로 제조한 젖산칼슘과 구연산칼슘의 순도 향상에 대한 연구)

  • Kang mee-Sook;Soh Gowan-Soon;Shin Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • Ash of Anadarac tegillarca granosa shell was used for preparation of calcium lactate and calcium citrate, and improvement of their purity was carried out by using ammonium chloride process (ACP) and ammonium nitrate process (ACP). Purity of calcium lactate and calcium citrate made by the reaction of ash of Anadarac tegillarca granosa shell with lactic acid solution and with citric acid solution was 94.35-96.72 and $87.58-93.06\%$, respectively. However, purity of calcium lactate and calcium citrate prepared with purified calcium carbonate pre-purified from the ash of Anadarac fegiliarca granosa shell using ACP and ANP method was 99.53-100.34 and $99.32-99.88\%$, respectively. The purity of these calcium products were higher than those of calcium lactate and calcium citrate made with ash of Anadarac tegillarca granosa shell. Whiteness of calcium lactate and calcium citrate prepared with purified calcium carbonate pre-purified using ACP and ANP method was 94.8-98.5 and 99.4-101.5, respectively. Whiteness of these calcium products was higher than that of calcium lactate (91.8) and calcium citrate (92.9) made with the ash of Anadarac tegillarca granosa shell. Therefore, we estimated that calcium lactate and calcium citrate prepared with purified calcium carbonate using ACP and ANP method could be used potentially as a food additive for calcium supplement.

Atmospheric Nitrate, sulfate, Ammonium, and Calcium Concentrations at Forest Area in Jeiu Island (제주도 산림지역에서의 대기중 Nitrate, Sulfate, Ammonium, Calcium 농도 분석)

  • 김대준;강창희;허철구;이기호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.151-152
    • /
    • 2003
  • 대기중에는 토양입자나 해양입자와 같이 직접적으로 방출되는 입자상 물질 이외에 자연적으로 생성되거나 인간의 활동에 의하여 배출되는 유황, 질소산화물 및 유기물의 가스상 물질이 대기 화학 반응에 의하여 입자상 물질로 변환된 이차입자가 혼재되어 있다. 이러한 입자상물질은 $K^{+}$, $Na^{+}$, $Mg^{2+}$, NH$_4$$^{+}$, $Ca^{2+}$ 등의 양이온과 Cl$^{-}$, NO$_3$$^{-}$, SO$_4$$^{2-}$ 등의 음이온 성분으로 구성되어 있다. (중략)

  • PDF

Study on Coagulant Application for Calcium Ammonium Nitrate Extraction of Denitrification Scrubber Waste Cleaning Solution (탈질 스크러버 폐 세정액에 포함된 질안석회 추출을 위한 응집제 적용 연구)

  • Lee, Hyun Suk;Song, Woon Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2017
  • The International Maritime Organization (IMO) in accordance with the regulations with respect to the combustion gases, such as NOx, SOx generated by the marine engine. The combustion gases must be equipped with a device to reduce emissions from all ships passing through the Baltic SECAs. In Korea, the International Maritime Organization (IMO) and the development of a device for NOx, SOx reduction. Scrubber is used in the ammonia water and the Urea solution in the waste water. The waste water containing ammonium nitrate and ammonium sulfate, react of the NOx and SOx gas. In this study, the recovery of by-product, which contains the waste water was used as an organic solvent extraction method of salting out. Ammonium nitrate and ammonium sulfate, the recovery process. A qualitative analysis of the collected by-product FT-IR analysis. Through the elemental analysis and SEM-EDS, characteristic evaluation was performed with an impurity.

Characteristics of $PM_{2.5}$ in Kanghwa (강화에서의 $PM_{2.5}$ 특성)

  • 최민규;여현구;임종억;조기철;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.573-583
    • /
    • 2000
  • In order to investigate the characteristics of PM(sub)2.5 in the background area, the following pollutant were measured from February 1996 to June 1999 in Kanghwa: PM(sub)2.5 mass, sulfate, nitrate, chloride, ammonium, sodium, calcium, magnesium and potassium. The mean concentration of PM(sub)2.5 mass was 25.8$\pm$1.2$\mu\textrm{g}$/㎥(range 5.18~85.74). This value was higher than the annual PM(sub)2.5 US NAAQS(15$\mu\textrm{g}$/㎥) and the total number of samples higher than the 24-h PM(sub)2.5 US NAAQS(65$\mu\textrm{g}$/㎥) was seven. PM(sub)2.5 masses also showed temporal variations both yearly and seasonally. Total water soluble ions constituted about 45% of PM(sub)2.5 miss, and sulfate, nitrate and ammonium were main components in water soluble ions. Compared with the literature data from other areas, the measured PM(sub)2.5 concentrations were relatively high.

  • PDF

Reduction of Nitrate using Nanoscale Zero-Valent Iron Supported on the Ion-Exchange Resin (이온교환 능력을 가진 지지체에 부착된 나노 영가철을 이용한 질산성 질소의 환원과 부산물 제거)

  • Park, Heesu;Park, Yong-Min;Jo, Yun-Seong;Oh, Soo-Kyeong;Kang, Sang-Yoon;Yoo, Kyoung-Min;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.679-687
    • /
    • 2007
  • Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.

The Cultural Characteristics and Antibacterial Activities of Cordyceps militaris and Paecilomyces tenuipes (번데기동충하초와 눈꽃동충하초의 배양특성 및 항균활성)

  • Lee, Ki-Man;Hong, In-Pyo;Nam, Sung-Hee;Sung, Gyoo-Byung;Bae, Yoon-Hwan
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.479-486
    • /
    • 2008
  • The cultural characteristics and antibacterial activities of Cordyceps militaris and Paecilomyces tenuipes were compared. The mycelial growth was the highest on MCM (Mushroom Complete Medium) for C. militaris and on YMA (Yeast Malt Agar) for P. tenuipes. But the mycelial density on MMM (Mushroom Minimal Medium) was lower than other on media. The optimum mycelial growth was observed at $25^{\circ}C$. C. militaris was low mycelial growth when it was transferred over 5 times generation. The carbon source for the optimum mycelial growth was fructose of monosaccharide, maltose of disaccharide and dextrin of polysaccharide. The calcium nitrate of organonitrogen was found the best mycelial growth on C. militaris, while the sodium nitrate observed to be well for mycelial growth on P. tenuipes. The ammonium tartrate was observed to be the best among the inorganonitrogen used for mycelial growth. Antibacterial activities were found out just C. militaris against Bacillus cereus of Gram (+).

Single Particle Analysis of Atmospheric Aerosol Particles Collected in Seoul, 2001, Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z Particle Electron Probe X-ray Microanalysis를 이용한 2001년 서울시 대기 중 입자상 물질 분석)

  • Koo Hee Joon;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.823-832
    • /
    • 2004
  • Atmospheric aerosol particles collected in Seoul on four single days, each in every seasons of 2001, were characterized and classified on the basis of their chemical species using low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA). Low-Z particle EPMA technique can analyze both the size and the chemical species of individual aerosol particles of micrometer size and provide detailed information on the size distribution of each chemical species. The major chemical species observed in Seoul aerosol were aluminosilicate, silicon dioxide, calcium carbonate, organic, carbon-rich, marine originated, and ammonium sulfate particles, etc. The soil originated species, such as aluminosilicate, silicon dioxide, and calcium carbonate were the most popular in the coarse fraction, meanwhile, carbonaceous and ammonium sulfate were the dominant species found in the fine fraction. Marine originated species such as sodium nitrate was frequently encountered, up to 30% of the analyzed aerosol particles.

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF