• 제목/요약/키워드: Calcium Influx

검색결과 225건 처리시간 0.021초

Cytosolic Calcium Alteration and Cell Injury by Silica in Rat Hepatocytes

  • Cha, Seok-Ho;Cha, Shin-Woo;Ko, Chang-Bo;Yu, Soung-Roung;Kim, Hye-Sun;Paik, Sang-Gi
    • Toxicological Research
    • /
    • 제14권4호
    • /
    • pp.507-513
    • /
    • 1998
  • The purpose of this study was to clarify the effect of silica on cytosolic free calcium mobilization and cell injury in primary cultured rat hepatocytes. Cytosolic free calcium concentration ([Ca$^{2+}$]) was measured employing calcium sensitive fluorescent dye, Fura-2 / AM, and cell injury was evaluated by determination of cellular ATP contents. Silica increased [Ca$^{2+}$], in a concentration-dependent manner in hepatocytes (10$^{-5}$ ~10$^{-2}$ M). Silica caused a biphasic increase in [Ca$^{2+}$], which was composed of an initial rapid rise and following sustained phase. $Ca^{2+}$ removal from the medium resulted in abolishment of initial and sustained phase of silica (10$^{-2}$ M)-induced [Ca$^{2+}$], in hepatocytes. The pretreatment with nifedipine (1 $\mu$M) attenuated silica-induced [Ca$^{2+}$], increases. Silica decreased cellular ATP contents in a dose-dependent manner. This silica-induced cell injury was attenuated by the pretreatment with EGTA (100 $\mu$M) and nifedipine (1 $\mu$M). This study suggests that the elevation of [Ca$^{2+}$], caused by silica may be due mainly to influx through a plasma membrane $Ca^{2+}$ channel and hepatotoxicity by silica relate with alteration of calcium homeostasis.ium homeostasis.

  • PDF

석류 추출물에 의한 인간호염구(KU812F 세포)의 탈과립 억제효과 (Inhibitory Effects of Punica granatum L. Extracts on Degranulation in Human Basophilic KU812F Cells)

  • 박경태;심선엽;전순실
    • 한국식품과학회지
    • /
    • 제40권6호
    • /
    • pp.702-706
    • /
    • 2008
  • 석류는 항당뇨, 항암, 항산화, 항미생물 및 항염증 효과와 같은 다양한 생리적 특성을 가지고 있다. 석류의 씨, 껍질 및 즙의 메탄올 추출물의 항알레르기 활성을 조사하기 위해, 인간 호염구인 KU812F 세포에 있어, A23187로 유도된 탈과립에 있어 저해효과를 검토하였다. 세포를 각각의 추출물로 처리하여, A23187로 자극한 후, 세포 내 칼슘농도, ${\beta}$-hexosaminidase 및 히스타민 함량을 조사하였다. 각각의 석류 추출물은 A23187에 의해 유도된 세포 내 칼슘 농도, 히스타민 및 ${\beta}$-hexosaminidase 유리를 농도 의존적으로 감소시켰다. 이러한 결과는 석류 추출물은 알레르기 반응에 있어 칼슘 유입의 억제를 통한 탈과립의 강력한 저해제로서의 가능성을 제시하고 있다.

Involvement of Orai1 in tunicamycin-induced endothelial dysfunction

  • Yang, Hui;Xue, Yumei;Kuang, Sujuan;Zhang, Mengzhen;Chen, Jinghui;Liu, Lin;Shan, Zhixin;Lin, Qiuxiong;Li, Xiaohong;Yang, Min;Zhou, Hui;Rao, Fang;Deng, Chunyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.95-102
    • /
    • 2019
  • Endoplasmic reticulum (ER) stress is mediated by disturbance of $Ca^{2+}$ homeostasis. The store-operated calcium (SOC) channel is the primary $Ca^{2+}$ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on $Ca^{2+}$ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular $Ca^{2+}$ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.

Protection by Paeonol on Cytotoxicity of Cultured Rat Hepatocytes Exposed to Br-A23187

  • Bae, Ki-Hwan;Kim, Young-Ho;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • 제11권3호
    • /
    • pp.174-177
    • /
    • 2003
  • The present experiment was performed to investigate the protective effects of paeonol isolated from Moutan Cortex Radicis on primary cultured rat hepatocytes exposed to Br-A23187 ($Ca^{2+}$ ionophore). Br-A23187 is frequently used as a model of cell killing as inducing both necrotic and apoptotic cell death. Hepatocytes were isolated by collagenase perfusion from livers of fasted male Sprague Dawley rats and cultured overnight. Cell viability was determined by propidium iodide using fluorocytometry in Krebs-Ringer-HEPES buffer at pH 7.4. In addition, intracellular calcium was measured by excitation at 340 and 380 nm and emission at 505 nm using a luminescence spectrophotometer. Paeonol (20-100 ${\mu}M$) inhibited cell killing induced by 10 ${\mu}M$ Br-A23187, in a dose-dependent manner. Paeonol also reduced increased intracellular calcium level when hepatocytes were exposed to Br-A23187. Therefore, the present results suggest that paeonol protects the hepatocytotoxicity induced by Br-A23187, via inhibiting the influx of calcium into into rat hepatocytes.

비만세포 매개 즉시형 과민반응에 대한 표고버섯 추출물의 보호 효과 (The Protective Effect of Lentinus Edodes on Mast Cell-Mediated Immediate-Type Hypersensitivity)

  • 연광해;최윤호
    • 생약학회지
    • /
    • 제50권3호
    • /
    • pp.175-184
    • /
    • 2019
  • Mast cells are crucial as effector cells in the immediate-type allergic reaction. Lentinus edodes has been the popular edible mushroom in oriental countries and reported to have immunomodulatory, anti-tumor, anti-atherogenic, anti-viral, and anti-allergic activities. However, the roles of L. edodes in mast cell-mediated anaphylactic reaction have not been fully elucidated. In this research, we have demonstrated the effects of the methanol extract of L. edodes (MELE) on mast cell-mediated anaphylaxis-like and anaphylactic reactions. MELE suppressed systemic anaphylaxis-like reaction, plasma histamine levels, and ear swelling response in mice treated with compound 48/80. MELE also suppressed passive systemic and cutaneous anaphylaxis mediated by anti-dinitrophenyl IgE. In accordance with these findings, MELE dose-dependently decreased histamine release from RPMC evoked by compound 48/80 or the antigen-antibody reaction. To clarify the mechanism of degranulation system, intracellular cAMP levels as well as calcium influx in RPMC was evaluated. In compound 48/80-treated RPMC, MELE blocked calcium uptake into the cells. In addition, MELE elevated the intracellular cAMP content and significantly attenuated compound 48/80-induced cAMP reduction in RPMC. Taken together, we propose the clinical use of MELE in mast cell-mediated immediate-type allergic diseases.

$Ca^{2+}$-induced $Ca^{2+}$ Release from Internal Stores in INS-1 Rat Insulinoma Cells

  • Choi, Kyung-Jin;Cho, Dong-Su;Kim, Ju-Young;Kim, Byung-Joon;Lee, Kyung-Moo;Kim, Shin-Rye;Kim, Dong-Kwan;Kim, Se-Hoon;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.53-59
    • /
    • 2011
  • The secretion of insulin from pancreatic ${\beta}$-cells is triggered by the influx of $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channels. The resulting elevation of intracellular calcium ($[Ca^{2+}]_i$) triggers additional $Ca^{2+}$ release from internal stores. Less well understood are the mechanisms involved in $Ca^{2+}$ mobilization from internal stores after activation of $Ca^{2+}$ influx. The mobilization process is known as calcium-induced calcium release (CICR). In this study, our goal was to investigate the existence of and the role of caffeine-sensitive ryanodine receptors (RyRs) in a rat pancreatic ${\beta}$-cell line, INS-1 cells. To measure cytosolic and stored $Ca^{2+}$, respectively, cultured INS-1 cells were loaded with fura-2/AM or furaptra/AM. $[Ca^{2+}]_i$ was repetitively increased by caffeine stimulation in normal $Ca^{2+}$ buffer. However, peak $[Ca^{2+}]_i$ was only observed after the first caffeine stimulation in $Ca^{2+}$ free buffer and this increase was markedly blocked by ruthenium red, a RyR blocker. KCl-induced elevations in $[Ca^{2+}]_i$ were reduced by pretreatment with ruthenium red, as well as by depletion of internal $Ca^{2+}$ stores using cyclopiazonic acid (CPA) or caffeine. Caffeine-induced $Ca^{2+}$ mobilization ceased after the internal stores were depleted by carbamylcholine (CCh) or CPA. In permeabilized INS-1 cells,$Ca^{2+}$ release from internal stores was activated by caffeine, $Ca^{2+}$, or ryanodine. Furthermore, ruthenium red completely blocked the CICR response in perrneabilized cells. RyRs were widely distributed throughout the intracellular compartment of INS-1 cells. These results suggest that caffeine-sensitive RyRs exist and modulate the CICR response from internal stores in INS-1 pancreatic ${\beta}$-cells.

가토 대동맥 평활근에서 인삼 알콜 추출물에 의한 Calcium 동원에 관한 연구 (A Study on the Mobilization of Calcium by Ginseng Alcohol Extract in Rabbit Vascular Smooth Muscle)

  • 김용배;이영호;강복순;강두희
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.77-90
    • /
    • 1990
  • There have been conflicting reports concerning the effect of Panax ginseng on the contractility of vascular smooth muscle, i.e., Panax ginseng extract has been reported to cause relaxation, contraction or to have no effect on the tension of vascular smooth muscle. A further investigation of $Ca^{++}$ stores which supply $Ca^{++}$ for contraction of vascular smooth muscle is needed to understand the underlying mechanisms of this conflicting effect of ginseng alcohol extract (GAE). The present study was intended to examine the sources of calcium mobilized for contraction of vascular smooth muscle by GAE. Aortic ring preparations were made from the rabbit thoracic aorta and endothelial cells were removed from the ring. The contractility of the aortic ring was measured under various experimental conditions and $Ca^{++}$ flux across the membrane of aortic ring and the sarcoplasmic reticulum and mitochondria were measured with a calcium selective electrode. The result were summarized as follows; 1) At low concentration of extracellular $Ca^{++}$, GAE increased the contractility of vascular smooth muscle in dose-dependent fashion except high concentration $Ca^{++}$ (1 mM). 2) In the presence of ryanodine, GAE still increased contractility of vascular smooth muscle as much as control group, but in the presence of caffeine, GAE increased it significantly. i.e. Their effects seemed to be additive. 3) In the presence of verapamil+lanthanum, and verapamil+lanthanum+ryanodine, the contractility of the vascular smooth muscle was decreased, but a dose dependent increase in vascular tension was still demonstrated by GAE although total tension was low. 4) GAE increased $Ca^{++}$ efflux from vascular smooth muscle cells, but have no effect on $Ca^{++}$ influx. 5) GAE increased $Ca^{++}$ efflux from sarcoplasmic reticulum and mitochondria vesicles. From the above results, it may be concluded that GAE increased the release of $Ca^{++}$ from sarcoplasmic reticulum, mitochondria or other intracellular $Ca^{++}$ stores of vascular smooth muscle, but it does not increase $Ca^{++}$ influx across the plasma membrane.

  • PDF

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • 제21권3호
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

Inhibition of Calcium Transport by $(1R,9S)-\beta-Hydrastine$ Hydrochloride in PC12 Cells

  • Yin, Shou-Yu;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • 제12권4호
    • /
    • pp.217-220
    • /
    • 2006
  • The effects of $(1R,9S)-\beta-hydrastine$ hydrochloride (BHSH) on $Ca^{2+}$ transport in rat pheochromocytoma PC12 cells were investigated. In the presence of external $Ca^{2+}$, BHSH at $100{\mu}M$ inhibited $K^+$ (56mM)-induced dopamine release, and $K^+-induced$ $Ca^{2+}$ influx and a sustained rise of $[Ca^{2+}]_i$. In addition, BHSH at 100 f.!M reduced the sustained rise of $[Ca^{2+}]_i$ elicited by 20 mM caffeine, but not by $1{\mu}M$ thapsigargin, in presence of external $Ca^{2+}$. These results suggest that BHSH inhibited $K^+-induced$ dopamine release and $[Ca^{2+}]_i$ influx, and store-operated $Ca^{2+}$ channels activated by caffeine, but not by thapsigargin, in PC12 cells.

杜冲의 토끼 음경해면체 평활근 이완효과 (Relaxation Effects of Eucomiae Cortex in Isolated Rabbit Corpus Cavernosum Smooth Muscle)

  • 박선영
    • 동의생리병리학회지
    • /
    • 제29권6호
    • /
    • pp.485-491
    • /
    • 2015
  • This study was aimed to investigate the relaxation effects of Eucomiae Cortex (EC) extract in isolated rabbit corpus cavernosum smooth muscle and its mechanism. To evaluate the relaxation of EC extract in rabbit corpus cavernosum, EC extract was treated in corporal strips which were precontracted with phenylephrine(PE). To study its mechanism, Nω-nitro-L-arginine (L-NNA) was pretreated after infuse of EC extract and compared with non-treated. In calcium chloride (Ca2+) -free krebs solution, EC extract and Ca2+ 1 mM were infused by turns after Ca2+ 1 mM was treated into corporal strips contracted by PE. Cell ability, nitric oxide (NO) and epithelial nitric oxide synthase (eNOS) on human umbilical vein endothelial cell (HUVEC) were measured by MTT assay, Griess reagent system and histochemical, immunohistochemical methods. EC extract showed a significant relaxation effects on the corporal strips, this effects were inhibited by pretreatment of L-NNA. EC extract inhibited the increase of contraction by Ca2+ influx in Ca2+-free krebs solution, and eNOS positive reaction in corpus cavernosum, NO production in HUVEC increased by treatment of EC extract. These result suggest that the relaxation effects of EC extract in isolated corpus cavernosum smooth muscle are involved in increase of eNOS and NO production, blocking of extracellular Ca2+ influx.