• Title/Summary/Keyword: Calcining treatment

Search Result 25, Processing Time 0.021 seconds

A Study on the Phase Formation Process in Bi-system Superconductor with Heat Treatment Conditions (열처리 조건에 따른 Bi계 초전도체에서 상 생성 과정에 대한 연구)

  • 정진인;이준웅;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.221-223
    • /
    • 1999
  • In this work, samples were manufactured variously by changing conventional calcining and sintering conditions and we tried the utilization by making the heat treatment time, which is demanded to high-Tc phase formation, much shorter. We found out optimal heat treatment conditions with the analysis on formation process at superconducting phase in term of the change of calcining and sintering time and then, examined X-ray diffraction(XRD) patterns, scanning electron microscope(SEM) measurement and energy dispersive X-ray spectrometer(EDX) of the samples manufactured under heat treatment conditions which we suggest here. As a result, 2223 high-$T_c$, phase of (Bi,Pb)SrCaCuO superconductor starting with ($Bi_l$ xPbx,)$_2$$Sr_2$$Ca_2$$Cu_3$$O_y$, composition was formed from 1 hr sintering sample at temperature nearby melting point and also the completed sample with calcining and sintering time of 9 hr was formed high-$T_c$.low-$T_c$ phase appearing in sight above the critical temperature of liquid $N_2$.

  • PDF

Study on Pretreatment Methods for Calcium Extraction from Cuttle Bone (갑오징어갑으로부터 칼슘의 추출을 위한 전처리 방법의 검토)

  • CHO Moon-Lae;HEU Min-Soo;KIM Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.483-487
    • /
    • 2001
  • As a part of basic investigation for utilizing of cuttle bone as a calcium source, we examined on the extraction methods (calcining at $800^{\circ}C$ for 2 hrs, autoclaving at $121^{\circ}C$ for 10 hrs and ultrasonic treatments at $60^{\circ}C$ for 10 hrs) as a pretreatment methods for preparation of calcium-based powder from cuttle bone, The color of calcined calcium-based powder from cuttle bone was white, while that treated by other methods was light yellow. The calcium content in calcined calcium-based powder was $70.5\%$, and revealed high about 2 times compared to those pretreated by other methods. And, calcium solubility in calcined calcium-based powder was improved 22 times compared to raw cuttle bone powder, Among calcining, autoclaving and ultrasonic treatments as a pretreaoent methods for preparation of calcium-based powder from cuttle bone, calcining treatment was superior to other methods on the aspect of color, calcium solubility and purity of calcium-based powder, Judging from X-ray diffraction pattern of calcined calcium-based powder, most of calcium was present as a form of calcium oxide, But, pH of calcined calcium-based powder revealed strong alkali of pH 12.9. This pH value might invoke health risk in using food resource. Therefore, for utilization effectively calcined calcium-based powder from cuttle bone, it requires a suitable treatment such as adjustment of pH to neutral condition.

  • PDF

Effects of Thermal Treatment Conditions on the Powder Characteristics of Uranium Oxide in HTGR Fuel Preparation (고온가스로용 핵연료 제조에서 열처리 조건이 우라늄산화물 입자 특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • The effects of thermal treatment conditions on ADU (ammonium diuranate) prepared by SOL-GEL method, so-called GSP (Gel supported precipitation) process, were investigated for $UO_2$ kernel preparation. In this study, ADU compound particles were calcined to $UO_3$ particles in air and Ar atmospheres, and these $UO_3$ particles were reduced and sintered in 4%-$H_2$/Ar. During the thermal calcining treatment in air, ADU compound was slightly decomposed, and then converted to $UO_3$ phases at $500^{\circ}C$. At $600^{\circ}C$, the $U_3O_8$ phase appeared together with $UO_3$. After sintering of theses particles, the uranium oxide phases were reduced to a stoichiometric $UO_2$. As a result of the calcining treatment in Ar, more reduced-form of uranium oxide was observed than that treated in air atmosphere by XRD analysis. The final phases of these particles were estimated as a mixture of $U_3O_7$ and $U_4O_9$.

Effects of the Heat Treatment Temperature and Thickness of YBCO Film Fabricated by TFA-MOD Method (TFA-MOD법을 이용한 YBCO 박막의 열처리 온도와 두께의 영향)

  • Jang Seok-Hern;Lim Jun-Hyung;Lee Jin-Sung;Yoon Kyung-Min;Kim Kyu-Tae;Joo Jin-Ho;Kim Chan-Joong;Nah Wan-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.467-476
    • /
    • 2006
  • We fabricated the YBCO films on LAO substrate using the TFA-MOD method and evaluated the effects of heat treatment temperature and film thickness on the microstructure, degree of texture, and critical properties. The calcining and firing were peformed at the temperature range of $370^{\circ}C-460^{\circ}C\;and\;750^{\circ}C-800^{\circ}C$, respectively. For the films fired at $775^{\circ}C$ after calcining at $400^{\circ}C-430^{\circ}C$showed highest critical temperature (Tc-onset) of 89.5 K and critical current (Ic) of 40A/cm-width which corresponds to critical current density (Jc) of $1.8MA/cm^2$. The highest critical properties are probably attributed to the formation of purer YBCO phase, stronger biaxial texture, and higher oxygen content, according to the XRD, pole-figure, SEM, Raman analysis. From the multi-coated films, the Ic increased from 39 to 169 A/cm-width as the coating repeated to four times, while the corresponding Jc was measured from once to be in the range of $0.8-1.2MA/cm^2$. Both Ic and Jc degraded as the coating repeated further, indicating that the optimum thickness is in the range of $1.0{\mu}m-1.7{\mu}m$.

Fabrication of TFA-MOD YBCO Films Using Y2Ba1Cu1Ox Process (Y2Ba1Cu1Ox공정을 이용한 TFA-MOC YBCO 박막 공정 개발)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Ha, Hong-Soo;Joo, Jinho;Nah, Wansoo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.98-105
    • /
    • 2006
  • YBCO film was synthesized by using a new approach to the TFA-MOD method. In the fabrication process, $Y_2Ba_1Cu_1O_x\;and\;Ba_3Cu_5O_8$ powders were used as precursors (the so called '211 process'), instead of Y-, Ba-, and Cu-based acetates, and dissolved in trifluoroacetic acid followed by calcining and firing heat treatment. Consequently, we successfully fabricated YBCO film and evaluated the phase formation, texture evolution, and critical properties as a function of the calcining and firing temperature and humidity, in order to explore its possible application in coated conductor fabrication. The films were calcined at $430-460^{\circ}C$ and then fired at $750-800^{\circ}C\;in\;a\;0-20\%$ humidified $Ar-O_2$ atmosphere. We observed that $BaF_2$ phase was effectively reduced and that a sharp and strong biaxial texture formed under humidified atmosphere leading to increased critical properties. In addition, we found that the microstructure varied significantly with the firing temperature: the grain grew further, the film became denser, and the degree of texture and phase purity varied as the firing temperature increased. For the film fired at $775^{\circ}C$ after calcining at $460^{\circ}C$, the critical current was obtained to be 39 A/cm-width (corresponding critical current density is $2.0\;MA/cm^2$ which was probably attributed to such factors as the enhanced phase purity and out-of-plane texture, the moderate film density and grain size, and crack-free surface.

Synthesis of Ultrafine TaC Powders Using Tantalum Oxalate Solution (수산 탄탈륨 용액을 이용한 초미립 TaC 분말의 합성)

  • Kwon, Dae-Hwan;Hong, Seong-Hyeon;Kim, Byoung-Kee
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.806-811
    • /
    • 2003
  • Ultrafine TaC powders were synthesised by spray drying using tantalum oxalate solution. The spray dried powders were spherical shape and less than 30 $\mu\textrm{m}$ in size. The powders calcined at 500 and X$700^{\circ}C$ showed amorphous structures and $Ta_2$$O_{5}$ phase was obtained by calcining at $700^{\circ}C$. The particle size and shape remains constant after calcination. The calcined spherical powders were composed of an agglomerate of primary particles under 50 nm in size. The complete formation of TaC could be achieved by heat treatment at $1050^{\circ}C$ for 6 hrs. The observed size of TaC powders by TEM was less than 200 nm.

Studies on Utilizations of Serpentine [I] Chemical Studies on the Fertilizer of Ignited Serpentine (蛇紋石의 利用에 關한 硏究 [I] 蛇紋石의 化學的 方法에 依한 肥效檢討)

  • Ham, Yong-Mook;Chun, Hai-Soo;Kim, Yong-Bai
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.5-8
    • /
    • 1964
  • In order to investigate the availability of serpentines occurring in Korea as fertilizer, the dissolving rates of Magnesia and Silicate contents in 0.5N HCl solution after heat treatment of the serpentines, have been studied. It was found that calcination of the serpentines at $700^{\circC$ for 30 min. was the best condition for utilization of serpentines as fertilizer. The weight decrease on calcining has also been discussed from the chemical point of view.

  • PDF

Preparation of Spacer for Safety Improvement of Architecture (건축물의 안전성 향상을 위한 Spacer의 제조)

  • 홍성수;강기준;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.45-50
    • /
    • 1998
  • The low grade domestic kaoline, such as pink-C and white-D, was converted to metakaoline, which has pozzolanic reactivity by heat treatment in the temperature range of $600^{\circ}C$ to 100$0^{\circ}C$ for preparing the spacer. The spacer was used for supporting the reinforced steel rod during construction to improve the safety of architecture. Pink-C and white-D were completely dehydroxylated when burnt at 80$0^{\circ}C$ for 1 hour and converted to metakaoline. The compressive strengths of specimens added calcined pink-C were lower than those of press molding mortar products inspite of calcining conditions. When white-D with calcined 80$0^{\circ}C$ and 100$0^{\circ}C$ for 1 hour was mixed 30% in the weight ratio of cement, the specimens cured 28 days had 338 $kg/cm^2$ and 347 $kg/cm^2$ of compressive strengths, respectively.

  • PDF

Synthesis and Characterization of Y-doped SrTiO3 Powder by Pechini Method (Pechini법에 의한 Y-doped SrTiO3 분말의 합성)

  • Yoon, Mi-Young;Song, R.H.;Shin, D.R.;Hwang, Hae-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • 8 mol% Y-doped $SrTiO_3$ powder was synthesized by Pechini method from titanium isopropoxide, strontium nitrate, yttrium nitrate, citric acid and ethylene glycol. A $Y_2Ti_2O_7$ pyrochlore phase-free perovskite powder was obtained by calcining a polymeric resin, which was prepared from a precursor solution, at $500^{\circ}C$ in an air atmosphere. Low temperature calcination could lead to a fine-grained microstructure. In the case of a solid-state reaction, an extended heat-treatment at high temperature in a reduced atmosphere needed to obtain a single phase perovskite $SrTiO_3$.

Synthesis of Yttria Doped Ceria Powders by a Citrate Method and Their Thin Film Preparation by Electrospray Method (구연산법에 의한 Yttria Doped Ceria (YDC) 분말 합성 및 정전분무법에 의한 YDC 박막 제조)

  • Kwon, Hyuk Taek;Baik, Seung Min;Kim, Jinsoo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.76-80
    • /
    • 2010
  • In this study, YDC powders with uniform composition and particle size were synthesized by a citrate method and their thin film deposition was conducted by electrospray deposition method. Polymeric precursor was prepared first by reaction of metal salts with citrate acid and ethylene glycol. Fluorite crystalline YDC powders were obtained by calcining the precursor at $750^{\circ}C$ for 3 h. The electrospray deposited films prepared at the optimum conditions became dense and defect-free after heat treatment at $1400^{\circ}C$ for 3 h. The film thickness was linearly varied with the deposition time.