• Title/Summary/Keyword: Calcination reaction

Search Result 236, Processing Time 0.023 seconds

Effects of Metal Ion Mole Ratio and Calcination Temperatures on Magnetic Properties and Microstructure of Ba2Co2Fe12O22 Powders Synthesized by Solid State Reaction (고상반응법으로 제조된 Ba2Co2Fe12O22분말의 자기적 성질과 미세구조에 미치는 금속이온몰비와 열처리 온도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.216-221
    • /
    • 2009
  • Y-type barium ferrite $Ba_2Co_2Fe_{12}O_{22}$ was synthesized by a solid state reaction method. Effects of metal ion mole ratio and calcination temperatures on magnetic properties and microstructures of the synthesized powders were investigated. Phase analysis and microstructure observation were performed with a XRD (X-ray diffractometer) and a FESEM (field effect scanning electron microscope), respectively. Magnetic properties of the powders were measured with a VSM (vibrating sample magnetometer). Single phase Y-type was synthesized when metal ion mole fraction $Fe^{3+}:\;Ba^{2+}:\;Co^{2+}$ was 6 : 1 : 1 and calcination temperature was $1050\;{^{\circ}C}$. High saturation magnetization value of 39.1 emu/g was obtained when metal ion mole fraction $Fe^{3+}:\;Ba^{2+}:\;Co^{2+}$ was 8 : 1 : 1 and calcination temperature was $1200\;{^{\circ}C}$.

Synthesis of Ultrafine TiC-15%Co Powder by Thermochemical Method (열화학적 방법에 의한 초미립 TiC-15%Co 분말의 합성)

  • 홍성현;탁영우;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.281-287
    • /
    • 2003
  • Ultrafine TiC-15%Co powders were synthesized by a thermochemical process, including spray drying, calcination, and carbothermal reaction. Ti-Co oxide powders were prepared by spray drying of aqueous solution of titanium chloride and $Ti(OH)_2$ slurry, both containing cobalt nitrate, fellowed by calcination. The oxide powders were mixed with carbon powder to reduce and carburize at 1100~125$0^{\circ}C$ under argon or hydrogen atmosphere. Ultrafine TiC particles were formed by carbothermal reaction at 1200~125$0^{\circ}C$, which is significantly lower than the formation temperature (~1$700^{\circ}C$) of TiC particles prepared by conventional method. The oxygen content of TiC-15%Co powder synthesized under hydrogen atmosphere was lower than that synthesized under argon, suggesting that hydrogen accelerates the reduction rate of Ti-Co oxides. The size of TiC-15%Co powder was evaluated by FE-SEM and TEM and Identified to be smaller than 300 nm.

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

Effect of Template Existence on the Textural Properties of Iron-based Catalyst for Fischer Tropsch Reaction

  • Sirikulbodee, Papahtsara;Tungkamani, Sabaithip;Phongksorn, Monrudee;Ratana, Tanakorn;Sornchamni, Thana
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Fischer Tropsch reaction is one of the interesting topic for renewable and clean energy. Polymerization of carbon monoxide or carbon dioxide with hydrogen over metal supported catalyst can produce long chain hydrocarbons. Synthetic liquid hydrocarbons are promising alternative to fossil fuels. This research work has been focused on the synthesis of Fe based catalyst for Fischer Tropsch reaction. Mesoporous silica (MS) support prepared by a precipitation method using two different washing solution, distilled water (DW) and acid in ethanol solution (ET), and different calcination temperature. Then, Fe/MS was prepared by an incipient wetness impregnation method. All of samples were systematically characterized using various physical and chemical techniques. TEM and XRD analysis were used to ensure that the cubic Ia3d mesostructure is stable after calcination. FTIR spectra are useful to ascertain the existence of template in the support. TPR studies were also used to understand the nature of Fe species and their reducibility. The results reveal that washing the support with distilled water and calcination at $550^{\circ}C$ can efficiently remove the triblock copolymer templates. The existence of template in the support affects the textural properties of all catalyst investigated.

Study on Calcination Characteristics of Limestones for In-Furnace Desulfurization in Oxy-Fuel Combustion (순산소연소 조건에서 석회석의 소성특성 및 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • In oxy-fuel combustion, $CO_2$ concentration in the flue gas may be enriched up to 95% owing to the gas recirculation. Under the high $CO_2$ concentration, the calcination characteristic of limestone is different from that of the conventional air combustion system. In this study, three types of limestone taken from different regions in Korea were used as $SO_2$ absorbent and their calcination characteristics depending on calcination temperature were investigated. The experiments were performed to examine the effects of operating variables such as absorbent species, reaction temperatures on the $SO_2$ removal efficiency and reacted limestone particles were captured to examine the sulfur contents. The degree of calcination and the specific surface area increased with calcination temperature and $SO_2$ removal efficiency increased with reaction temperature. The results showed remarkable difference in $SO_2$ removal efficiencies between the limestone types. The sulfur content of the reacted limestone with the highest $SO_2$ removal efficiency was about 10%.

A Study on the Propane Dehydrogenation activity of Pt-Sn catalyst using MgAl2O4 support (MgAl2O4 지지체를 이용한 Pt-Sn/MgAl2O4의 프로판 탈수소 활성 연구)

  • Byun, Hyun-Joon;Koh, Hyounglim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.757-767
    • /
    • 2018
  • In the propane dehydrogenation reaction proceeding at high temperature, the main cause of deactivation of the catalyst is coke deposition and sintering. In order to investigate the catalysts for reducing such inactivation, we have investigated the applicability of $MgAl_2O_4$ as a carrier for the catalytic dehydrogenation reaction. $MgAl_2O_4$ was prepared by Alcohthermal method at calcination temperature of 800, 900, $1000^{\circ}C$, and $Pt-Sn/MgAl_2O_4$ catalyst was prepared by supporting Pt and Sn by co-impregnation method. The reaction temperature was conducted at a high temperature of 650, $600^{\circ}C$ to confirm the thermal stability. As a result of the reaction experiment, it was confirmed that the conversion rate and yield of propane dehydrogenation reaction test were higher than that of the carrier-applied catalyst having a carrier calcination temperature of 900 and $1000^{\circ}C$, when the carrier-applied catalyst having a calcination temperature of $800^{\circ}C$ was used, It was found that the yield was higher than that of $Pt-Sn/{\theta}-Al_2O_3$ at $650^{\circ}C$. TGA, BET, XRD, CO-chemisorption, and SEM-EDS analyzes were performed for characterization. $MgAl_2O_4-800^{\circ}C$ was correlated with the relationship between good yield, Pt dispersion and low deactivation rate.

A Study of Combustion Reaction of Methane by Pd Catalyst - Effects of Support Size & Calcination Temperature - (팔라듐 촉매의 메탄의 연소반응에 관한 연구 -담체의 크기와 소성온도에 따른 효과-)

  • Lee Taeck Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.52-56
    • /
    • 2004
  • Pd catalyst have been used in hydrogenation, oxidation, and low temperature combustion reaction. Recently, it is candidated as a possible reagents in the partial oxidation of methanol reformers of the fuel cell. Pd catalysts, even though it is very precious and expensive, catalytic functioning is good, but it still need to be improved in the matter of durability and low catalytic activity after calcination. In this study, we synthesize the improved Pd catalyst and study their chemical functioning.

  • PDF

Gas Reaction Characteristics of Waste Oyster Shell Sorbent

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Yoo, Kyung-Seun;Choung, Young-Hean;Choi, Suck-Gyu;Kim, Young-Sik
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.365-370
    • /
    • 2005
  • The objective of this study is to develop the sorbent of oyster shell, which can remove gaseous acid pollutants emitted from the incinerator and power plants. The physicochemical properties of prepared absorbents have been measured using ICP and BET Also, this study is to investigate the Hydration/calcination reaction in the fixed bed reactor. Thus, the results could be summarized as follows. Oyster shell can be used in powder type without former processing. It should be also noted that sulfation reactivity of oyster sample increases to about 5 times by calcination/hydration reaction due to the increase of specific surface area and pore volume. From these experiments, we have found that both $SO_2$ and $NO_x$ in simulated flue gas can be effectively removed by use of oyster absorbent.

  • PDF

Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction (소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화)

  • 강순국;정명규
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF