• Title/Summary/Keyword: Cadmium sulfide

Search Result 65, Processing Time 0.271 seconds

Annealing and In Interlayer Effects on the Photovoltaic Properties of CBD-In2S3/CIGS Solar Cells (열처리와 In 중간층 적용에 의한 CBD-In2S3/CIGS 태양전지의 특성 향상)

  • Kim, Hee-Seop;Kim, Ji-Hye;Shin, Dong-Hyeop;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.432-438
    • /
    • 2011
  • In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the $In_2S_3$/CIGS solar cell dramatically improved when the films were annealed at $300^{\circ}C$ in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the $In_2S_3$/CIGS interface. The $In_2S_3$/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the $J_{sc}$ and FF values. Furthermore, the $In_2S_3$/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.

Electrochemical Fabrication of CdS/CO Nanowrite Arrays in Porous Aluminum Oxide Templates

  • Yoon, Cheon-Ho;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1519-1523
    • /
    • 2002
  • A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

Suggestion of Photovoltaic Switch and Evaluation of Its Usability (태양광 스위치 제안 및 효용성 평가)

  • Jang, Junho;Lee, Junho;Jeong, Juhwan;Jang, Minseok;Lee, Yonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.33-41
    • /
    • 2013
  • In this paper, a photovoltaic switch is suggested that is operated by solar module, a substitute for CdS(Cadmium Sulfide) of most existing automatic switches and thus is powered by its renewably charged battery, and its usability is investigated through various experiments. At first the characteristics of CdS and the operation principle of the existing automatic switch are investigated, and then the characteristics of solar module are examined. These preparatory research shows the possibility of substitution of solar module instead of CdS in light activated switch. Secondly the suggested photovoltaic switch's circuit is designed, implemented and then its experimental comparison data shows the possibility for the replacement of the existing switch to the suggested switch, and furthermore its superiorities.

Fabrication of $Cu_2/CdS$ solar cell and its characteristics ($Cu_2/CdS$ 태양전지 제작 및 그 특성연구)

  • 유평렬;김현숙;이재윤;강창훈;박은옥;정태수;김택성;양동익;신영진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.315-323
    • /
    • 1997
  • The sing1e crystal of cadmium sulfide was grown by vertical sublimation method. The lattice constants of CdS single crystal by extrapolation method are $a_0=4.139\AA$ and $c_0=6.719\AA$, respectively. The $Cu_2$S/CdS solar cell was fabricated using the single crystal of cadmium sulfide and the CuCl solution. The light- to- dark JV cross over effect of the $Cu_2$S/CdS solar cell was measured after annealing for 2 minutes at $250^{\circ}C$ in air atmosphere. The values of Voc, Jsc, Vop, FF, and efficiency are 0.40 volt, $4.2mA/\textrm{cm}^2$, 0.31 volt, $3.8mA/\textrm{cm}^2$, 0.68 and 3.8 %, respectively. The spectral response of the solar cell shows the peaks at 498 nm (2.49 eV) and 585 nm (2.12 eV).

  • PDF

Growth and Properties of $Cd_{1-x}$$Zn_x$/S Films Prepared by Chemical Bath Deposition for Photovoltaic Devices (Chemical Bath Depsoition법에 의한 $Cd_{1-x}$$Zn_x$/S 박막의 제조 및 특성에 관한 연구)

  • 송우창;이재형;김정호;박용관;양계준;유영식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.104-110
    • /
    • 2001
  • Structural, optical and electrical properties of Cd$_{1-x}$ Zn$_{x}$S films deposited by chemical bath deposition(CBD), which is a very attractive method for low-cost and large-area solar cells, are presented. Especially, in order to control more effectively the zinc component of the films, zinc acetate, which was used as the zinc source, was added in the reaction solution after preheating the reaction solution and the pH of the reaction solution decreased with increasing the concentration of zinc acetate. The films prepared after preheating and pH control had larger zinc component and higher optical band gap. The crystal structures of Cd$_{1-x}$ Zn$_{x}$S films was a wurtzite type with a preferential orientation of the (002) plane and the lattice constants of the films changed from the value for CdS to those for ZnS with increasing the mole ratio of the zinc acetate. The minimum lattice mismatch between Cd$_{1-x}$ Zn$_{x}$S and CdTe were 2.7% at the mole ratio of (ZnAc$_2$)/(CdAc$_2$+ZnAc$_2$)=0.4. As the more zinc substituted for Cd in the films, the optical transmittance improved, while the absorption edge shifted toward a shorterwavelength. the photoconductivity of the films was higher than the dark conductivity, while the ratio of those increased with increasing the mole ratio of zinc acetate. acetate.

  • PDF

Characterization of CdS Thin Films for Compound Photovoltaic Applications by Atmospheres of Rapid Thermal Process (급속열처리 분위기에 따른 화합물 태양전지용 CdS 박막의 특성변화)

  • Park, Seung-Beum;Kwon, Soon-Il;Lee, Seok-Jin;Jung, Tae-Hwan;Yang, Kea-Joon;Lim, Dong-Gun;Park, Jae-Hwan;Song, Woo-Chang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.105-106
    • /
    • 2008
  • Structural, optical and electrical properties of CdS films deposited by chemical bath deposition (CBD), which are a very attractive method for low-cost and large-area solar cells, are presented. Cadmium sulfide (CdS) is II-VI semiconductor with a wide band gap of approximately 2.42 eV. CdS films have a great application potential such as solar cell, optical detector and optoelectronics device. In this paper, effects of Rapid Thermal Process (RTP) on the properties of CdS films were investigated. The CdS films were prepared on a glass by chemical bath deposition (CBD) and subsequently annealed at standard temperature $(400^{\circ}C)$ and treatment time (10 min) in various atmospheres (air, vacuum and $N_2$). The CdS films treated RTP in $N_2$ for to min were showed larger grain size and higher carrier density than the other samples.

  • PDF

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.170-173
    • /
    • 2010
  • Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

Properties of CdS Thin Films Prepared by CMD Method (CMD 방법으로 제조한 CdS 박막의 특성)

  • 정길룡;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.46-49
    • /
    • 1992
  • Cadmium sulfide thin films were deposited on glass substrate by Chemical Mist Deposition from solutions containing equimolar (0.1M) cadmium chloride and thiourea [(NH$_2$)$_2$CS] at a mist velocity of 1.6m/sec. Substrate temperatures were ranged between 200$^{\circ}C$ and 400$^{\circ}C$. The microstructure and semiconducting property of the films were investigated using SEM, X-ray diffraction, UV transmittance measurement and four point probe method. All the films have hexagonal structure and diffraction patterns indicate that the intensity of (112) and (101) reflections increase with increasing substrate temperature, whereas (002) reflection substrate temperature, whereas(002) reflection decrease for substrate temperatures between 250$^{\circ}C$ and 350$^{\circ}C$. The films prepared at lower temperature have a significant number of pinholes due probably to entrapped gaseous reaction. Optical transmittance of the films deposited at 350$^{\circ}C$ was about 75%. Optical bandgap of the films were 2.43eV regardless of substrate temperature. The dark resistivity of the films decreased with increasing substrate temperature up to 300$^{\circ}C$ and increased with further increasing substrate temperature. The films were photosensitive and had dark-to-light resistivity ratios of about 10 at room temperature for a white-light photoexcitation intensity of 50mw/$\textrm{cm}^2$.

  • PDF