• Title/Summary/Keyword: Caco-2 cells

Search Result 134, Processing Time 0.033 seconds

Effect of Korean Red Ginseng on the Stability of the Tight Junction of Intestinal Epithelial Cells (홍삼에 의한 Caco-2 단세포층 간극의 안정화)

  • Shon, Dong-Hwa;Kim, Mi-Hye;Kim, Young-Chan;Kim, Sung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.335-342
    • /
    • 2010
  • Bioactive components involved in the tight junction stabilization of intestinal epithelial cells from Korean red ginseng were studied by analyzing transepithelial electrical resistance (TEER) values of the Caco-2 cell monolayer between the apical and basolateral sides for 96 hr. The treatment with less than $20\;{\mu}g/mL$ of the Korean red ginseng extract to the apical side of Caco-2 cell monolayer gave higher TEER values than the control. However, the treatment with more than $130\;{\mu}g/mL$ of the Korean red ginseng extract drastically decreased the TEER values, and these effects were not due to its cytotoxicity. When fractions of low molecular weight compounds, polysaccharides, proteins, saponins, and polyphenols derived from Korean ginseng were applied to the apical side of the Caco-2 cell monolayer, polyphenols showed high tight junction stabilizing activity and saponins showed low activity, but the others showed no significant activity. These results suggest that Korean red ginseng might be useful for the prevention of food allergy by stabilizing the tight junction of intestinal epithelial cells leading to hindering absorption of food allergens.

Screening and Characterization of Pro biotic Lactic Acid Bacteria Isolated from Korean Fermented Foods

  • Lim, Sung-Mee;Im, Dong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • To examine their potential as probiotics, acid and bile tolerance, antibiotics resistance, adhesion capacity to Caco-2 and HT-29, and antibacterial activity, of LAB isolated from Korean fermented foods such. as dongchimi, kimchi, Meju, and doenjang were assayed against foodborne pathogenic bacteria. DC 55, DC 136, DC 222, KC 21, KC 24, KC 34, KC 43, KC 117, MJ 54, MJ 301, SP 33, and SP 170 strains were resistant to acid and bile conditions. In particular, DC 55, DC 136, KC 24, KC 43, and MJ 301 strains were highly resistant to higher than 20 ${\mu}g/ml$ concentrations of vancomycin, streptomycin sulfate, or amoxicillin, whereas, DC 222, KC 21, KC 34, KC 117, MJ 54, and SP 33 strains were susceptible to lower than 2 ${\mu}g/ml$ concentrations of those antibiotics. The adhesion to HT-29 and Caco-2 cells varied with the strains tested in a strain-dependent manner. The highest level of adhesion was observed with DC 55, KC 21, KC 24, and MJ 301 strains, having higher than 50% of adhesion to HT-29 or Caco-2 cells. In addition, Staphylococcus aureus was the most sensitive to KC 21, showing an inhibition of about 70%, and the antibacterial activity of KC 21 against S. aureus resulted most likely from both organic acids and bacteriocin. Based on its phenotypic characteristics and utilization of various sugars, the KC 21 strain was identified as Lactobacillus plantarum.

In vitro infection of Cryptosporidium parvum to four different cell lines

  • Yu, Jae-Ran;Choi, Sung-Don;Kim, Young-Wook
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.2
    • /
    • pp.59-64
    • /
    • 2000
  • To determine a suitable condition for in vitro infection model of cryptosporidium parvum, four different cell lines, AGS, MDCK, HCT-8 and Caco-2, were used as host cell lines which were cultured at various concentrations of added supplements. These supplement include fetal bovine serum (FBS), sodium choleate, ascorbic acid, folic acid, calcium pantothenate, para-aminobenzoic acid and pyruvate and their effects on the cell lines which were infected with C. parvum were evaluated. The results of this study showed that the AGS cell line was most susceptible to C. parvum whereas the Caco-2 cells appeared to be least susceptible to C. parvum. In regards to the serum condition, 10% FBS was suitable for the growth of AGS and HCT-8 cells, and 1% FBS was good for the growth of the MDCK cells when they were inoculated with C. parvum. Vitamines had a positive effect on the AGS cells, and pyruvate also showed positive effects on all of the cell lines except for Caco-2. Modified medium for each cell line was prepared by adding appropriate amounts of each supplement which resulted in the highest parasite infection number. Modified media increased the number of parasites infected on AGS cells to 2.3-fold higher when compared to the control media. In this study, we found that the AGS cell line was a suitable host model for evaluating C. parvum in vitro study and the media contents for the optimal infection conditions were suggested.

  • PDF

Uptake of a Dipeptide by the Dipeptide Transporter in the HT-29 Intestinal Cells (HT-29 장관세포에 있는 디펩티드수송체에 의한 디펩티드의 흡수)

  • Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 1995
  • The peptide transporter can be utilized for improving the bioavailability of compounds that are poorly absorbed. Characterization of the dipeptide uptake into the human intestinal epithelial cells, HT-29 was investigated. The uptake of tritiated glycylsarcosine $([^3H]-Gly-Sar,\;0.1\;{\mu}Ci/ml)$ was measured in confluent or subconfluent HT-29, Caco-2, and Cos-7 cells. Uptake medium was the Dulbecco's Modified Eagle's Media (DMEM) adjusted to pH 6.0. Both HT-29 and Caco-2 cells expressed the dipeptide transporter significantly (p<0.005) but Cos-7 did not. Certain portions of passive uptake were observed in all three cell lines. Uptake of Gly-Sar was largest at 7 days after plating HT-29 cells with significant inhibition with 25 mM cold Gly-Sar (p<0.05). but expression ratio of the dipeptide transporter was 0.7, suggesting lower expression. The effect of pH on Gly-Sar uptake was not significant in the range of pH 6 to 8. Gly-Sar uptake was also inhibited with 50 mM carnosine, 25 mM Gly-Sar, and 35 mM cephalexin significantly (p<0.05). From above results the dipeptide transporter was expressed well in HT-29 cells and was similar to that in the small intestine, suggesting that large amounts of mRNA of the transporter from the cells can be obtained.

  • PDF

Comparison of the Permeability of Stilbene Analogues in Caco-2 Cells

  • Kim, Su-Na;Ahn, Ji-Yun;Shon, Dong-Wha;Kim, Ji-Sun;Kim, Mi-Hye;Ha, Tye-Youl
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.675-678
    • /
    • 2008
  • Permeability of resveratrol, piceid, rhapontigenin, and rhaponticin in Caco-2 cell assays using high-performance liquid chromatography were compared. Caco-2 cell monolayers were used to evaluate the transport rates of stilbene analogues from the apical to the basolateral sides. All stilbenes experimented in this study were transported to the basolateral side by times. For comparing the permeability of 4 stilbenes, we calculated the slope of the cumulative concentration of each stilbene in basolateral sides over time, resulting in those values of resveratrol, piceid, rhapontigenin, and rhaponticin with $3.766{\times}10^{-5}$, $4.330{\times}10^{-6}$, $5.430{\times}10^{-5}$, and $2.458{\times}10^{-5}\;{\mu}M/sec$, respectively. Apparent permeability coefficient of resveratrol and rhapontigenin were calculated to $9.994{\times}10^{-6}$ and $1.441{\times}10^{-6}\;cm/sec$, respectively, while those of piceid and rhaponticin were to $1.149{\times}10^{-7}$ and $6.523{\times}10^{-7}\;cm/sec$, respectively. These results suggest that aglycones would be absorbed more effectively than glycosides in stilbenoids.

Characterization of Bacillus polyfermenticus KJS-2 as a Probiotic

  • Kim, Kang-Min;Kim, Myo-Jeong;Kim, Dong-Hee;Park, You-Soo;Kang, Jae-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1013-1018
    • /
    • 2009
  • The identification and characterization of Bacillus polyfermenticus KJS-2 (B. polyfermenticus KJS-2) was conducted using TEM, an API 50CHB kit, 16S rDNA sequencing, a phylogenetic tree, and catalase and oxidase testing. The conversion rate of glucose to lactic acid by B. polyfermenticus KJS-2 was found to be $60.7{\pm}4.9%$. In addition, treatment of B. polyfermenticus KJS-2 with artificial gastric juice (pH 2.0) and bile acid (pH 6.5) for 4 h resulted in a final viability of $140{\pm}7.9%$ and $108{\pm}3.5%$, respectively. Finally, the results of adhesion experiments using Caco-2 cells revealed that the adherence of B. polyfermenticus KJS-2 to Caco-2 cells was approximately $65{\pm}0.6%$.

Absorption Behavior in the Body of Chitosan Oligosaccharide according to Molecular Weight; An In vitro and In vivo Study

  • Jang, Mi-Kyeong;Kang, Seong-Koo;Nah, Jae-Woon
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.937-941
    • /
    • 2006
  • Chitosan has a wide range of applications in biomedical materials as well as in dietary supplements. Chitosan oligosaccharide with free-amine group (COFa) is an improvement over traditional chitosan that lacks the usual impurities and materials detrimental to the body. Based on a previous study of water soluble chitosan (WSC, chitosan lactate), we investigated the molecular weight (Mw) - dependent absorption phenomena of COFa in vitro and in vivo with various Mws. The absorption of CO Fa was significantly influenced by its molecular weight. As Mw increases, the absorption decreases. The absorption profiles for 5 K COFa (Mw=5 kDa) were observed to be more than 10 times higher than those of high molecular weight chitosan (100 K HWSC Mw=100 kDa) in both in vitro and in vivo transport experiments. Furthermore, the in vitro transport experiment suggested that transcellular transport of the COFa (Mw <10 kDa) through Caco-2 cell layer could occur with a negligible cytotoxic effect. The COFas showed a cytotoxic effect on Caco-2 cells that was dependent on dose and Mw. COFa could be transported transcellularly through the Caco-2 cell layer.

Comparison of Protective Effects of Young and Ripened Persimmon Extracts against Inflammatory Stress Induced by Deoxycholic Acid in Small Intestinal Cells (Deoxycholic Acid 유도 장세포 염증성 손상에 대한 어린감과 성숙감 추출물들의 보호 효과 비교)

  • Kim, Leeseon;Kwon, Oran;Kim, Ji Yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1583-1587
    • /
    • 2015
  • Bile acids are endogenous metabolites that aid in the digestion and absorption of ingested fat and fat-soluble vitamins. However, high concentrations of deoxycholic acid (DCA) in the colon are associated with high incidence of colorectal cancer. In the present study, the binding of persimmon extracts to DCA in order to decrease inflammatory stress induced by DCA in a small intestinal epithelial cell line, Caco-2, was investigated. Young and ripened persimmons were extracted with distilled water (DW), ethanol, and acidic ethanol. Further, DW extract residue was re-extracted with acidic ethanol. Of the obtained extracts, acidic ethanol extract of young persimmon showed the highest bile-acid binding capacity. Moreover, acidic ethanol extract of young persimmon significantly inhibited nitric oxide production in Caco-2 cells stimulated with DCA and prevented significant reduction of trans-epithelial electric resistance. Based on these results, acidic ethanol extract of young persimmon can be used as a functional ingredient to enhance gastrointestinal health.

The Anti-Rotaviral and Anti-Inflammatory Effects of Hyrtios and Haliclona Species

  • Koh, Su-Im;Shin, Hea-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.2006-2011
    • /
    • 2016
  • The marine sponges Hyrtios and Haliclona species, both of which are known to produce secondary bioactive metabolites, were used to extract 1304KO-327 and 1304KO-328. Such secondary metabolites are potentially antibacterial, antiviral, anti-inflammatory, antitumoral, antifungal, and antiplasmodial. In the present study, the effects of 1304KO-327 and 1304KO-328 were studied for their clinical and pathological importance. The cytotoxicity of 1304KO-327 and 1304KO-328 was assessed via MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on HT-29, Caco-2, and Raw 264.7 cells. Rotavirus-infected Caco-2 cells were used to prove the antiviral effects of the marine sponge extracts. The test results cogently proved that the virus-inhibiting effects of the sponge extracts improved with extract concentration. Anti-inflammatory effects of the marine sponge extracts were tested on Lipopolysaccharide-treated Raw 264.7 cells. Nitric oxide and cytokine were produced by treatment of the cells with LPS and the inhibiting effects of the sponge extracts on $IL-1{\beta}$ formation were investigated. This study found that the NO production was decreased dose dependently, and $IL-1{\beta}$ formation was significantly reduced by the marine sponge extracts.