DOI QR코드

DOI QR Code

Comparison of Protective Effects of Young and Ripened Persimmon Extracts against Inflammatory Stress Induced by Deoxycholic Acid in Small Intestinal Cells

Deoxycholic Acid 유도 장세포 염증성 손상에 대한 어린감과 성숙감 추출물들의 보호 효과 비교

  • Kim, Leeseon (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kim, Ji Yeon (Department of Food Science and Technology, Seoul National University of Science and Technology)
  • 김이선 (서울과학기술대학교 식품공학과) ;
  • 권오란 (이화여자대학교 식품영양학과) ;
  • 김지연 (서울과학기술대학교 식품공학과)
  • Received : 2015.06.16
  • Accepted : 2015.08.13
  • Published : 2015.10.31

Abstract

Bile acids are endogenous metabolites that aid in the digestion and absorption of ingested fat and fat-soluble vitamins. However, high concentrations of deoxycholic acid (DCA) in the colon are associated with high incidence of colorectal cancer. In the present study, the binding of persimmon extracts to DCA in order to decrease inflammatory stress induced by DCA in a small intestinal epithelial cell line, Caco-2, was investigated. Young and ripened persimmons were extracted with distilled water (DW), ethanol, and acidic ethanol. Further, DW extract residue was re-extracted with acidic ethanol. Of the obtained extracts, acidic ethanol extract of young persimmon showed the highest bile-acid binding capacity. Moreover, acidic ethanol extract of young persimmon significantly inhibited nitric oxide production in Caco-2 cells stimulated with DCA and prevented significant reduction of trans-epithelial electric resistance. Based on these results, acidic ethanol extract of young persimmon can be used as a functional ingredient to enhance gastrointestinal health.

본 연구에서는 어린감과 성숙감의 탄닌 함량 및 담즙산과의 결합능력을 비교 조사하였다. 또한 사람의 장내 세포인 Caco-2 cell에 어린감과 성숙감 추출물을 처리한 후 고농도의 DCA로 자극시켜 생성되는 NO의 수준과 TEER의 차이를 확인하였다. 탄닌 함량과 담즙산의 결합능력은 성숙감에 비해 어린감에서 유의적으로 높은 것으로 나타났으며 어린감 산성 에탄올 추출물에서 유의적으로 가장 높은 탄닌 함량 및 담즙산 결합능력을 보였다. NO 생성 억제능으로 확인한 염증반응에서도 어린감 산성 에탄올 추출물이 유의적으로 가장 높은 효과를 보였으며 DCA에 의해 유도된 장세포 간극의 느슨함을 유의하게 막아줄 수 있음이 확인되었다. 본 연구 결과를 토대로 어린감의 산성 에탄올 추출물은 고지방 식사를 통해 고농도로 축적되는 담즙산에 의해 형성된 유해한 장내 환경을 건강하게 유지시켜줄 수 있는 기능성 소재로 개발할 가능성이 있음이 확인되었다.

Keywords

References

  1. Matsumoto K, Kadowaki A, Ozaki N, Takenaka M, Ono H, Yokoyama S, Gato N. 2011. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo. Phytother Res 25: 624-628. https://doi.org/10.1002/ptr.3306
  2. Seong JH, Han JP. 1999. The qualitative differences of persimmon tannin and the natural removal of astringency. Korean J Postharvest Sci Technol 6: 66-70.
  3. Matsuo T, Ito S. 1978. The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agric Biol Chem 42: 1637-1643. https://doi.org/10.1271/bbb1961.42.1637
  4. Lee YC, Sa YS, Jeong CS, Suh KG, Choi HS. 2001. Anticoagulating activity of persimmon and its processed foods. J Korean Soc Food Sci Nutr 30: 949-953.
  5. Kim SG, Lee YC, Suh KG, Choi HS. 2001. Acetaldehyde dehydrogenase activator from persimmon and its processed foods. J Korean Soc Food Sci Nutr 30: 954-958.
  6. Harada M, Sakagami R, Watanabe T, Onitsuka T, Katoh H, Nagai A. 2005. Antibacterial and deodorizing effect of persimmon tannin. Jpn J Conserv Dent 48: 314-319.
  7. Shinmoto H, Kimura T, Yamagishi K, Suzuki M. 2002. Antimutagenicity of fruit extract on Trp-P2 induced mutagenicity of Salmonella typhimurium TA98. J Jpn Soc Food Sci Technol 49: 203-206. https://doi.org/10.3136/nskkk.49.203
  8. Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S. 1998. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. J Nutr 128: 2023-2027.
  9. Achiwa Y, Hibasami H, Katsuzaki H, Imai K, Komiya T. 1997. Inhibitory effects of persimmon (Diospyros kaki) extract and related polyphenol compounds on growth of human lymphoid leukemia cells. Biosci Biotechnol Biochem 61: 1099-1101. https://doi.org/10.1271/bbb.61.1099
  10. Hibino G, Nadamoto T, Fujisawa F, Fushiki T. 2003. Regulation of the peripheral body temperature by foods: a temperature decrease induced by the Japanese persimmon (kaki, Diospyros kaki). Biosci Biotechnol Biochem 67: 23-28. https://doi.org/10.1271/bbb.67.23
  11. Sakaguchi T, Nakajima A. 1994. Accumulation of uranium by immobilized persimmon tannin. Sep Sci Technol 29: 205-221. https://doi.org/10.1080/01496399408002478
  12. Seo JH, Jeong YJ, Kim KS. 2000. Physiological characteristics of tannins isolated from astringent persimmon fruits. Korean J Food Sci Technol 32: 212-217.
  13. Matsumoto K, Yokoyama S, Gato N. 2010. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother Res 24: 205-210.
  14. Raimondi F, Santoro P, Barone MV, Pappacoda S, Barretta ML, Nanayakkara M, Apicella C, Capasso L, Paludetto R. 2007. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol 294: G906-G913.
  15. Da Silva M, Jaggers GK, Verstraeten SV, Erlejman AG, Fraga CG, Oteiza PI. 2012. Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radic Biol Med 52: 151-159. https://doi.org/10.1016/j.freeradbiomed.2011.10.436
  16. Moschetta A, Portincasa P, van Erpecum KJ, Debellis L, Vanberge-Henegouwen GP, Palasciano G. 2003. Sphingomyelin protects against apoptosis and hyperproliferation induced by deoxycholate: potential implications for colon cancer. Dig Dis Sci 48: 1094-1101. https://doi.org/10.1023/A:1023712712025
  17. Kim HJ, Park TS, Jung MS, Son JH. 2011. Study on the anti-oxidant and anti-inflammatory activities of sarcocarp and calyx of persimmon (Cheongdo Bansi). J Appl Biol Chem 54: 71-78. https://doi.org/10.3839/jabc.2011.013
  18. Erlejman AG, Fraga CG, Oteiza PI. 2006. Procyanidins protect Caco-2 cells from bile acid- and oxidant-induced damage. Free Radic Biol Med 41: 1247-1256. https://doi.org/10.1016/j.freeradbiomed.2006.07.002
  19. Rakic S, Petrovic S, Kukic J, Jadranin M, Tesevic V, Povrenovic D, Siler-Marinkovic S. 2007. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem 104: 830-834. https://doi.org/10.1016/j.foodchem.2007.01.025
  20. Hayes JE, Allen P, Brunton N, O'Grady MN, Kerry JP. 2011. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical product: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem 126: 948-955. https://doi.org/10.1016/j.foodchem.2010.11.092
  21. Mandrioli R, Mercolini L, Ferranti A, Fanali S, Raggi MA. 2011. Determination of aloe emodin in Aloe vera extracts and commercial formulations by HPLC with tandem UV absorption and fluorescence detection. Food Chem 126: 387-393. https://doi.org/10.1016/j.foodchem.2010.10.112
  22. Takekawa K, Matsumoto K. 2012. Water-insoluble condensed tannins content of young persimmon fruits-derived crude fibre relates to its bile acid-binding ability. Nat Prod Res 26: 2255-2258. https://doi.org/10.1080/14786419.2011.650640
  23. Trautwein EA, Kunath-Rau A, Erbersdobler HF. 1999. Increased fecal bile acid excretion and changes in the circulating bile acid pool are involved in the hypocholesterolemic and gallstone-preventive actions of psyllium in hamsters. J Nutr 129: 896-902.
  24. Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H. 1996. DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24: 4105-4110. https://doi.org/10.1093/nar/24.21.4105
  25. Bogdan C. 2001. Nitric oxide and the immune response. Nat Immunol 2: 907-916. https://doi.org/10.1038/ni1001-907
  26. Clark JA, Doelle SM, Halpern MD, Saunders TA, Holubec H, Dvorak K, Boitano SA, Dvorak B. 2006. Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. Am J Physiol Gastrointest Liver Physiol 291: G938-G949. https://doi.org/10.1152/ajpgi.00090.2006
  27. Hackam DJ, Upperman JS, Grishin A, Ford HR. 2005. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 14: 49-57. https://doi.org/10.1053/j.sempedsurg.2004.10.025
  28. Halpern MD, Holubec H, Saunders TA, Dvorak K, Clark JA, Doelle SM, Ballatori N, Dvorak B. 2006. Bile acids induce ileal damage during experimental necrotizing enterocolitis. Gastroenterology 130: 359-372. https://doi.org/10.1053/j.gastro.2005.10.023

Cited by

  1. Antioxidant activities of ethanolic and acidic ethanolic extracts of astringent persimmon in H2O2-stimulated Caco-2 human colonic epithelial cells vol.26, pp.4, 2017, https://doi.org/10.1007/s10068-017-0156-5
  2. Effect of ginger and cinnamon extract mixtures on the growth of intestinal bacteria and intestinal inflammation vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.050