• Title/Summary/Keyword: Cable-stayed Bridge

Search Result 545, Processing Time 0.021 seconds

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.

The Erection Method of Starter Segment for Cable Stayed Bridge using Asymmetric System and Cable (케이블과 비대칭 구조를 이용한 사장교 주두부 시공 방법)

  • Cho, Seo-Kyung;Yoon, Tae-Seob;Jeong, Seung-Wook;Lee, Jea-Chan;Eo, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1031-1038
    • /
    • 2002
  • In this paper the erection method of the Seohae Bridge starter is presented. The erection method of starter for cable stayed bridge was changed from conventional bracket supported erection to heavy lifting supported directly by stays. There was the need to reduce the erection time drastically. The cost saving was obtained as a bonus.

  • PDF

Automated identification of the modal parameters of a cable-stayed bridge: Influence of the wind conditions

  • Magalhaes, Filipe;Cunha, Alvaro
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.431-444
    • /
    • 2016
  • This paper was written in the context of a benchmark study promoted by The Hong Kong Polytechnic University using data samples collected in an instrumented cable-stayed bridge. The main goal of the benchmark test was to study the identification of the bridge modes of vibration under different wind conditions. In this contribution, the tools developed at ViBest/FEUP for automated data processing of setups collected by dynamic monitoring systems are presented and applied to the data made available in the context of the benchmark study. The applied tools are based on parametric output only modal identification methods combined with clustering algorithms. The obtained results demonstrate that the proposed algorithms succeeded to automatically identify the modes with relevant contribution for the bridge response under different wind conditions.

Evaluation of Thermal Effect on the Concrete Pylon of a Cable-stayed Bridge (사장교 콘크리트 주탑의 온도영향 평가)

  • Park Jong Chil;Kim Young Jin;Choi Sung Kwon;Lee Chung Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.355-358
    • /
    • 2005
  • In this paper, an actual behavior of the pylon of Seohae Grand Bridge which is a cable stayed bridge and has been constructed 4 years ago was analyzed by using data acquisition system. As a result, the pylon of cable stayed bridge behaved normally with respect to the change of temperature. The annual displacement of the top of pylon(PY1) ranged from -71.4mm to +181.7mm in the longitudinal direction of the bridge. In the case of the longitudinal displacement, the displacement of PY1 was bigger than that of PY2 because PY1 is movable and PY2 is fixed in terms of the constraint condition of super structure. For the long term, PY1 will be sloped gently to the direction of Dangjin and PY2 will be also sloped gently to the direction of Pyongtaek by the effect of creep and shrinkage in the case of the longitudinal direction. The result of structural analysis showed good agreement with the result mentioned above.

  • PDF

Temporary Stabilizing Measures during Construction of a Steel Composite 2-Edge Girder Cable Stayed Bridge (강합성 2주형 사장교의 시공중 내풍 안정성 확보 방안 연구)

  • Kim, Young-Min;Kim, Dae-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.63-66
    • /
    • 2008
  • The bridge deck section composed of a concrete slab resting on two I-beam girders are known to be susceptible to flutter instability and vortex shedding. Moreover, the cable stayed bridge in construction is more vulnerable to wind rather than in service when the free cantilever construction method is applied. This paper describes the effect of the dynamic wind loads on the bridge during construction and the effect of alternative temporary stabilizing measures. Therefore, a series of wind tunnel tests and numerical analysis were carried out to determine if any countermeasures were required.

  • PDF

Wind-resistant performance of cable-supported bridges using carbon fiber reinforced polymer cables

  • Zhang, Xin-Jun;Ying, Lei-Dong
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2007
  • To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are schemed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the dynamic behavior, aerostatic and aerodynamic stability of the two bridges are conducted by 3D nonlinear analysis, and the effect of different cable materials on the wind resistance is discussed. The results show that as CFRP cables are used in cable-supported bridges, (1) structural natural frequencies are all increased, and particularly great increase of the torsional frequency occurs for suspension bridges; (2) under the static wind action, structural deformation is increased, however its aerostatic stability is basically remained the same as that of the case with steel cables; (3) for suspension bridge, its aerodynamic stability is superior to that of the case with steel cables, but for cable-stayed bridge, it is basically the same as that of the case with steel stay cables. Therefore as far as the wind resistance is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

Dynamic characteristics of cable vibrations in a steel cable-stayed bridge using nonlinear enhanced MECS approach

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.37-66
    • /
    • 2008
  • This paper focuses on the nonlinear vibrations of stay cables and evaluates the dynamic characteristics of stay cables by using the nonlinear enhanced MECS approach and the approximate approach. The nonlinear enhanced MECS approach is that both the girder-tower vibrations and the cable vibrations including parametric cable vibrations are simultaneously considered in the numerical analysis of cable-stayed bridges. Cable finite element method is used to simulate the responses including the parametric vibrations of stay cables. The approximate approach is based on the assumption that cable vibrations have a small effect on girder-tower vibrations, and analyzes the local cable vibrations after obtaining the girder-tower responses. Under the periodic excitations or the moderate ground motion, the differences of the responses of stay cables between these two approaches are evaluated in detail. The effect of cable vibrations on the girder and towers are also discussed. As a result, the dynamic characteristics of the parametric vibrations in stay cables can be evaluated by using the approximate approach or the nonlinear enhanced MECS approach. Since the different axial force fluctuant of stay cables in both ends of one girder causes the difference response values between two approach, it had better use the nonlinear enhanced MECS approach to perform the dynamic analyses of cable-stayed bridges.

Seismic Damage Index Proposal and Damage Assessment for Cable-Stayed Bridge (사장교의 내진 손상지수의 제안 및 손상도 평가)

  • Kim, Eung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.127-135
    • /
    • 2018
  • With the nation showing increasing concern for earthquakes, there have been several methods for the analysis of earthquakes and evaluation of damage. Nevertheless, there is no clear standard to assess the seismic damage to structures quantitatively. Accordingly, this study conducted seismic analysis of several forms of seismic waves and actual seismic load, targeting the cable stayed bridge, which is supported by a cable and proposes a method for evaluating the damage based on the results. The damage index was calculated based on the tilting of the pylon of the cable-stayed bridge and the characteristics of physical seismic damage was suggested with 4 levels, such as A, B, C, and D. In addition, it is not proper to simply judge that the seismic damage index is obtained as large or small at all times depending on the seismic analysis method. Although this study focused on the proposal seismic damage index and an evaluation of the damage targeting the cable stayed bridge, the result was applied to a structure with a similar maximum displacement response.

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm (강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정)

  • Sang-Soo Ma;Tae-Yun Kwon;Won-Hong Lee;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.