• Title/Summary/Keyword: Cable terminations

Search Result 15, Processing Time 0.031 seconds

Aging Characteristics of Cable Terminations for Distribution Power System (배전용 케이블 종단접속재의 경년특성)

  • Han, Jae-Hong;Lee, Byeong-Seong;Kim, Sang-Jun;Lee, Cheol-Ho;Kim, Sang-Uk;Kim, Yong-Ae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.580-586
    • /
    • 1999
  • Aging characteristics of 13 years service-aged distribution cable terminations which dismounted from 3 regions were investigated by material characterization and electrical test. All dismounted terminations have propagating micro-cracks on the surface of weathershed and chalking fillers from bulk. Elemental analysis of these terminations showed that the carbon was decreased and the oxygen was increased on the surface of weathershed due to a little oxidation reaction. Contact angle of terminations was abnormally increased with time. In the analysis of anti-oxidation ability and chemical structure, there were no differences between new and dismounted terminations. All terminations showed satisfactory results in electrical test. Therefore, itcan be considered that aging is only propagating on the surface of dismounted terminations. Also, it was confirmed that environmental factors such as UV, pollution and salt have an effect on the aging through the observation of polymer composition change.

  • PDF

Insulation Aging Diagnostics of Submarine Medium Voltage Power Cables (배전급 해저케이블의 절연열화진단)

  • Mo, Jong-Myung;Yi, Dong-Young;Song, Kwang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.149-152
    • /
    • 2001
  • In this work, we have conducted insulation aging assessment and maintenance for submarine medium voltage power cable systems to discriminate and maintain bad cables economically. We have found that aging status of submarine cable systems are very poor and in progress. We have found that insulation status were improved with the replacement of cable terminations. We have confirmed with the electrical and structural analysis of terminations, that the poor aging status of cables are mainly caused not by the cable insulations but by the aging of cable terminations. From the above results, we have also confirmed that the domestic diagnostic system is successful and convenient for the discrimination and maintenance of the damaged cables economically.

  • PDF

Insulation Diagnostics and Maintenance of Submarine Medium Voltage Power Cable Systems (해저 케이블 시스템의 열화진단 및 유지보수)

  • 이동영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.80-86
    • /
    • 2003
  • A study on the insulation aging assessment and maintenance for submarine medium voltage power cable systems has been performed The purpose of this work is the economic discrimination and maintenance of bad cables which is likely to cause cable system failure. 1 have found that aging status of submarine cable systems are very poor and in progress. Therefore, we have the replacement of cable terminations and repeat the diagnostic measurement Insulation status were improved with the replacement of cable terminations. I have confirmed, with the electrical md structural analysis of terminations, that the poor aging status of cables are mainly caused not by the cable insulations but by the aging of cable terminations. From the above results, I have also confirmed that the domestic diagnostic system is successful and convenient for the discrimination and maintenance of the damaged cables economically.

Thermal Characteristics Analysis by Ambient and Operating Temperature according to the Kinds of Terminations in Underground Power Cable Systems (지중송전케이블 종단접속함 종류에 따른 외기 및 운전온도에 의한 열특성 분석)

  • Jung, Chae-Kyun;Kang, Ji-Won;Lee, Bang-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1154-1160
    • /
    • 2015
  • This paper describes the thermal characteristics of underground power cable system terminations according to the change of ambient temperature as well as operating temperature. Recently, the failure has been gradually increasing in outdoor termination during winter season because the power demand was increased by electricity heating system. The power demand and outdoor temperature is difference between day time and night time. The temperature difference has an influence on conductor extension and shrinkage due to conductor force as well as thermal mechanical characteristics. These phenomena have daily repeated during heating and cooling period of conductors. In these cases, the insulation of outdoor terminations might be degraded by the reduced interface pressure surrounding stress relief cone. Therefore, in this paper, the thermal characteristics are variously analysed by simulation considering power demand and ambient temperature condition during winter season at epoxy type termination as well as slip-on type termination

Development Status of MV Cable with Eco-friendly and High Heat Resistance

  • Jung, Yeon-ha;Lee, Byung-sung;Seo, In-jin;Kwon, Jung-ji;Sohn, Kwang-ik;Kim, Hyung-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.55-59
    • /
    • 2016
  • In Europe, polypropylene-insulated HV class cable with high temperature and no cross-linking was commercialized following the MV class. Our company also started a study of the polypropylene-insulated cable in 2013 and was carried out thermal, physical and electrical test. In addition, polypropylene-insulated cable was tested for compatibility with conventional joints and terminations in emergency condition and the accelerated life test for verifying their design life is in progress. The results of this study will be used to establish a standard specification and operation conditions of the polypropylene-insulated cable.

Analysis on Lightning Overvoltage According to Lead Length of Surge Arrester for Underground Cable Outdoor Termination Protection at C/H Tower (C/H 철탑 종단접속함 보호용 피뢰기 리드선 길이에 따른 뇌과전압 분석)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.257-263
    • /
    • 2016
  • This paper describes the lightning arrester transients in cable head termination. The installation references of cable head tower and lightning arresters are firstly reviewed, then the performance of lightning arrester operation is also evaluated based on lightning overvoltage analysis by the change of grounding lead cable length. This paper finally proposes the optimal length of grounding lead cable at the cable head termination. The limited lightning current is also proposed according to the change of grounding lead cable length. The results will contribute to protecting insulation breakdown failure against lightning surge at the terminations and joints.

Electrical Insulation Design of a 154 kV Class HTS Cable and Termination (154 kV급 고온초전도 케이블 및 단말의 전기절연 설계)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang -Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • A transmission class high-temperature superconducting(HTS) power cable system is being developed in Korea. For insulation design of this cable the grading method of insulating paper is proposed. Two kinds of laminated polypropylene paper that has different thickness has been used as the electrical insulation material. The use of graded insulation gives improved mechanical bending properties of the cable. In a HTS cable technology the terminations are important components. A HTS cable termination is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors. in the axial direction. There is also a temperature difference from ambient to about 77 K. For insulation design of this termination, glass fiber reinforced plastic(GFRP) was used as the insulation material of the termination body, and the capacitance-graded method is proposed. This paper will report on the experimental investigations on impulse breakdown and surface flashover characteristics of the insulation materials for insulation design of a transmission class HTS power cable and termination. Based on these experimental data, the electrical insulation design of a transmission class HTS power cable and termination was carried out.

A Evaluation Technique for Reliability of Extra-High Voltage Cable Accessories using High Frequency Partial Discharge Measurement (고주파 부분방전 측정에 의한 초고압 접속함 신뢰성 평가 기술)

  • Sin, Du-Seong;Lee, Chang-Yeong;Kim, Chung-Sik;Jeon, Seung-Ik;Kim, Dong-Uk;Park, Wan-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.186-195
    • /
    • 2000
  • In this paper, partial discharge (PD) measurement was performed to evaluate the quality of the cable joint and termination constructions. The resistive coupling technique for PD detection using resistivity of semiconducting layer of the cable in the accessories, such as joints and terminations. With high frequency PD (HEPD) measurement, an excellent sensitivity below 20pC could be achieved under unshielded condition. The localization of the defects in the accessories could be identified. During heating cycle, PDs were monitored and analyzed. At that time, the PDs were dependent on the temperature of the heating cycle and showed cyclic behaviors, which were attributed to local delamination of the interfaces, between epoxy unit and stress relief cone(SRC) and between SRC and cable, due to the difference of thermal expansion. As a conclusion, HFPD measurement technique was proven to be an effective diagnostic method for qualification of extra high voltage (EHV) cable accessories. With this technique, the optimal design of the components of the accessories could be verified not only in an early stage but also under operating condition. This technique would result in the improvement of the reliability of the EHV cable accessories.

  • PDF

A Study on Electrical Accident of Distributing Cable Termination Considering PL Law Environment (PL법 환경을 고려한 배전 케이블 종단부의 전기적 사고 연구)

  • Kim, Sang-Hyun;Choi, Jae-Hyeong;Choi, Jin-Wook;Baek, Seung-Myeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.178-183
    • /
    • 2009
  • This paper introduces experimental investigates of an accident pattern for the distributing cross linking-polyethylene(XLPE) cable terminations considering product liability(PL) law environment. The influence of defects such as thickness and length decrease of XLPE, an impurity on XLPE and the gap between stress-con of housing and semi-conductor on insulating properties of the termination have been studied. The thickness and length decrease of XLPE decrease ac breakdown strengths. Breakdown traces of XLPE that is damaged by knife displayed ellipse shape. The gap of between stress-con and semiconductor deteriorates dielectric strength of XLPE seriously.

Development of HVDC 500kV PPLP MI cable systems in Korea (HVDC 500kV PPLP MI 케이블시스템 개발)

  • Lee, Soo-bong;Cho, Dong-sik;Lee, Tae-ho;Kim, Sung-yun;Lee, Su-kil;Jeon, Seung-ik
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1202-1203
    • /
    • 2015
  • This paper describes the development of HVDC ${\pm}500kV$ polypropylene laminated paper (PPLP) mass-impregnated (MI) type cable system for HVDC transmission lines. As you know, mass-impregnated type cable generally has only insulating layer with the Kraft paper impregnated with a high-viscosity insulating compound. But polypropylene laminated paper is made of a layer of extruded polypropylene (PP) film sandwiched between two layers of Kraft paper. Thanks to PP film and its combination with Kraft paper, PPLP has higher AC, Impulse (Imp.) and DC breakdown (BD) strengths as well as lower dielectric loss than conventional Kraft paper insulation. In addition, Kraft MI cable has a limitation for the maximum conductor temperature as $55^{\circ}C$ But this PPLP MI cable has higher maximum conductor temperature than that of Kraft MI cable due to advantage of oil drainage characteristics. It is the most economic type of cable for HVDC transmission. Also HVDC ${\pm}500kV$ PPLP MI cable system was developed including land joints and outdoor-terminations. In order to prove the mechanical and electrical performances, the type test was carried out according to CIGRE recommendations. A full scale cable system has been tested successfully. And additional load cycle and polarity reversal tests on the cable system showed a higher performance compared with a similar mass impregnated paper cable.

  • PDF