• Title/Summary/Keyword: Cable damage

Search Result 210, Processing Time 0.03 seconds

Analytical Method to Determine the Dynamic Amplification Factor due to Hanger Cable Rupture of Suspension Bridges (현수교 행어 케이블 파단에 의한 동적확대계수의 해석적 결정법)

  • Na, Hyun Ho;Kim, Yuhee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.301-308
    • /
    • 2014
  • A suspension bridge is a type of bridge in which the beam is suspended by load-bearing cables. There are two classifications: the self-anchored suspension bridge has the main cable anchored to the bridge girders, and the earth-anchored suspension bridge has the main cable anchored to a large anchorage. Although a suspension bridge is structurally safe, it is prone to be damaged by various actions such as hurricanes, tsunamis and terrorist incidents because its cables are exposed. If damage to a cable eventually leads to the cable rupture, the bridge may collapse. To avoid these accidents, studies on the dynamic behavior of cable bridges due to the cable rupture have been carried out. Design codes specify that the calculated DAF (dynamic amplification factor) should not exceed a certain value. However, it has been difficult to determine DAFs effectively from dynamic analysis, and thus no systematic approach has been suggested. The current study provides a guideline to determine DAFs reliably from the dynamic analysis results and summarizes the results by applying the method to an earth-anchored suspension bridge. In the study, DAFs were calculated at the location of four structural parts, girders, pylons, main cable and hangers, with variations in the rupture time.

RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi초전도 선재의 RRR거동패동)

  • 신형섭;배영준;하동우;오상수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In order to investigate the effect of fatigue damage on the properties of RRR in this study. fatigue tests at room temperature and residual resistivity measurement tests at 12K were carried out using annealed 9 strand Cu-Ni/NbTi/Cu composite cables Through fatigue tests of NbTi composite cables. a conventional S-N curve could be obtained even though there existed a possibility of fretting among strands, From the resistivity measurement of a NbTi strand after fatigue test, it was found that the RRR of xii·gin strand for annealed cables was 3 times more than that for as-received one. With increasing of fatigue cycles at a sress amplitude level. the RRR decreased. which was resulted from the accumulation of damage such as lattice defects and dislocation within the Cu stabilizer.

  • PDF

Annealing effect on RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi 초전도 선재의 RRR거동에 미치는 아닐링 효과)

  • 신형섭;오상엽;하동우;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.104-108
    • /
    • 2000
  • In this study, the fatigue test at room temperature and residual resistivity measurement test at 12K were carried out, respectively, using a 0 strand Cu-Ni/NbTi/Cu composite cable, in order to investigate how the annealing treatment effects on critical properties due to fatigue damage. Through a fatigue test of a 0 strand Cu-Ni/NbTi/Cu composite cables, a conventional S-N curve was obtained even though there existed a possibility of fretting among strands. From the resistivity measurement of a NbTi strand after fatigue tests, it was found that the RRR for annealed cables was 3 times more than that for as-received one, but with increase of the repeated number the RRR decreased which was resulted from the accumulation of damage such as lattice defects dislocation within the Cu stabilizer.

  • PDF

Study on Stress Recovery Length of 7-Wire Strand due to Local Damage (강연선의 국부적 손상에 따른 응력 회복길이 분석 연구)

  • Seo, Dong-Woo;Kim, Byung-Chul;Jung, Kyu-San;Na, Wongi;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.150-156
    • /
    • 2017
  • This study examined the stress recovery length due to the local damage of a 7-wire strand, which is applied widely to PSC (Post Tensioned Concrete) bridges and cable-stayed bridges. The 7-wire strand is a multiple stranded steel of PC prestressing strand. Owing to the nature of the material, it is damaged continuously after completion with corrosion being the main cause of damage. On the other hand, due to its structural characteristics, it is difficult to grasp the degree of damage inside the cable and the pattern of stress variation. In the case of cables applied to bridges, the parts that are susceptible to corrosion are generated depending on the water supply and installation shape, which may cause local damage. This study analyzed the tendency of performance degradation and stress recovery length according to local damage of a 7-wire strand, which is applied mainly to bridge post-tensioning or stay cables. This study developed a computer-based simulation model that was validated with experimental results. The model developed in this study can be used to evaluate the safety level and estimate the remaining life span of P SC bridges or cable-stayed bridges.

Behavior of cable-stayed bridges under dynamic subsidence of pylons

  • Raftoyiannis, I.G.;Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.317-345
    • /
    • 2012
  • Cable-stayed bridges are often used in modern bridge engineering for connecting two geographical points of long distance. A special load case to cable-stayed bridges is earthquake, which can produce horizontal as well as vertical movements on the pylons of the bridge. These movements may be transient in nature, i.e., only resulting in the transient vibration of the bridge, but causing no damage consequences. In some extreme cases, they may cause permanent subsidence on one or more pylons of the bridge. In this paper, the effect of pylons' subsidence on the dynamic deformations of the bridge and on the cables' strength is thoroughly studied. Conclusions useful to the design of cable-stayed bridges will be drawn from the numerical study.

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

FAILURE ANALYSIS OF 154KV TERMINATION IN GAS INSULATED SWITCHGEAR (154KV 가스중 종단접속의 사고유형과 방지대책)

  • Lee, Cheon-Goo;Lee, Min-Gyoo;Kim, Byung-Soo;Hur, Keun-Do
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.594-597
    • /
    • 1993
  • With the increase of electric power demand in the downtown area. many problems, such as the difficulty in security of substation site and interference of the electromagnetic wave or damage to person due to outdoor type substation facilities has been occured. Therefore, the compaction of substation facilities is required and the gas insulated switchgear(GIS) has been adopted accordingly. However, much care should be taken of the interface problem between cable and GIS. This paper describes the failure analysis and a countmeasure for prevent ion from failure in the interface.

  • PDF

The investigation of tracking resistant sheath material for ADSS Optic cable (ADSS 광 케이블 시스용 내 트래킹 재료의 특성에 관한 연구)

  • Lee, Jung-Hee;Seo, Il-Gun;Whang, Sun-Ho;Lee, Gun-Joo;Bak, Seung-Yup;Kim, Kyeung-Min;Lee, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.102-105
    • /
    • 2002
  • ADSS(All Dielectirc Self-Supporting) cable installed under high voltage power cable line suffers a variety of environmental influence, rain, wind, snow fall, chemical pollution, salt fog and electrical stress. Its lifetime is required to be at least 20 years with this harsh weathering condition. The electrical stress under high voltage power line gives rise to dry band arcing and tracking, the severest damage, on the outer sheath of cable. Finally tracking might penetrate sheath and cause the break-down of ADSS cable. Tracking resistant sheath material, therefore, should be used to protect the core of ADSS from dry band arcing and to be sure long lifetime. In this work, we discuss various commercial tracking resistant material to investigate the way of track resistance and compare their mechanical, electrical, weathering and tracking properties through serial experiments. We found track resistant material is categorized into two main type : polyethylene with metal hydroxide and polyethylene with reduced carbon black. The Liquid contaminant, Inclined plane Tracking and Erosion test says the time to track of tracking resistant material with metal hydroxide has a little longer time to track in the high applied voltage than that with carbon black, but mechanical and weathering properties were inferior to.

  • PDF

The Relationship between Damage Pattern and Structural Performance for 7-Wire Strand of Stay Cables (사장교 케이블용 7연선 손상 패턴과 구조성능 수준과의 관계 분석)

  • Seo, Dong-Woo;Na, Wongi;Kim, Byung-Chul;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.810-816
    • /
    • 2017
  • This study investigates the relationship between the damage patterns and structural performance levels of a multi-strand 7-wire strand that is used as an important member of stay cables. Stay cables are continuously damaged after completion, and corrosion is the main cause. However, it is difficult to check the damage pattern inside the cable due to its structural characteristics, and it is difficult to evaluate the degradation level of the damage quantitatively. This study derives the relationship between the damage pattern and the performance level of the stranded wire by comparing results and analyzing them through an indoor experiment and finite element analysis. In order to simulate the damage of a 7-wire strand, artificial damage was applied by mechanical precision machining to perform a performance evaluation. The results of the analysis show that regardless of the damage size of the strand, the structural performance deteriorated immediately after the damage. It was experimentally and analytically deduced that the type and amount of damage should be considered as a parameter for evaluating the performance level of the strand. This information can be used for the safety management of a cable stayed bridge by constructing a database according to the pattern and amount of damage.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.