• Title/Summary/Keyword: Cable Joint

Search Result 198, Processing Time 0.038 seconds

A Study on the Optimization of Interfacial Pressure for the Stress Relief Cone in the Ultra-High Voltage Level Prefabricated Type Joint Box (초초고압 CV Cable용(用) 조립형 직선 접속함에서의 Stress Relief Cone 계면압력 최적화에 관한 연구)

  • Baek, J.H.;Baek, S.Y.;Lee, S.K.;Huh, G.D.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1614-1616
    • /
    • 1998
  • Insulation performance of major components of prefabricated joint such as epoxy insulation unit and premolded rubber cone are guaranteed by material selection design and proper manufacturing. On the other hand insulation performance of the interfaces between the premolded rubber cone and the epoxy insulation unit and the cable insulation is maintained by keeping the premolded rubber cone to close contact with such insulation by spring. Electric characteristics of a interface depend on the contact pressure, but the required characteristics are assured so far as a proper contact pressure is maintained. In this report, the interfacial pressure by pressure sensors both in the early stage and after heating cycle were measured and the simulation by FEM program were presented. The comparison of these two results show that interfacial pressure could be controlled optimally by changing the spring length and lubricant state of the interface.

  • PDF

Analysis of the DC Resistance of the Butt Joint using the Random Contact Patterns of Strands

  • Lee, Ho-Jin;Lee, Sang-Il;Lee, Bong-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.17-21
    • /
    • 2004
  • The butt joint was verified to satisfy the thermal stability of the ITER magnet system through the ITER CS model coil test. Since the contact area in the butt joint is limited to the cross section of the cable, it is necessary to analyze and control the joining parameters precisely for improving the DC resistance. It is difficult to simulate the cables, which are composed of a lot of strands, as three-dimensional models using the commercial code. The random numbers were used to simulate many kinds of contact patterns of the strands on the bonding surface for calculating the bonding area and the DC resistance of the butt joint. The calculated DC resistance decreases with an increase of cable filling factor in terminal. The calculated DC resistance of a 0.9 cable filling factor is about 0.48 n-Ohm, which is about one-tenth of that in the CS model coil test when not considering the electrical contact resistance. From this difference, the electrical contact resistance between the strands and copper sheet was calculated.

Application of AI-foil Electrode for Detecting Partial Discharge in Middle Joint Box (초고압 전력케이블용 중간접속부내 부분방전 검출을 위한 박전극 응용)

  • Kim, Dae-Yeol;Yun, Ju-Ho;Choi, Yong-Sung;Park, Dae-Hee;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.79-81
    • /
    • 2007
  • To detect partial discharge of 154kV joint box, we have made experiment by using the Al-foil electrode sensor. Generally the signals which are detected in partial discharge test of underground power transmission cable are accompanied with both noises of high voltage and noises of surrounding power cable. The most noise in near to end part of joint box is corona, beside other noises flowed from surrounding area. Partial discharge test is difficulty due to these noises. First, we had used Al-Foil sensor on middle joint box of 154[kV] underground transmission power cable, and then analyzed reliability of calibration signal by using the Al-Foil electrode sensor of NJB. From above results, decrement properties measured highly. But incase of injecting calibration signal of 500[pC] after measuring signals in IJB, the S/N ratio had about 25[dB] acquisition.

  • PDF

Adhesion properties and Breakdown behaviors of LSR Interface (LSR 계면의 접착특성 및 절연파괴거동)

  • Yoon, Seung-Hoon;Nam, Jin-Ho;Lee, Gun-Ju;Choi, Soo-Geol;Shin, Doo-Sung;Ji, Eung-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.232-235
    • /
    • 2002
  • Recently developed liquid silicone rubber (LSR) can be cured by platinum catalyzed additional hydrosilylation mechanism and has the advantage of no byproduct compared to traditional millable peroxide curing silicone rubber. We investigated the characteristics of dielectric breakdown of silicone rubber and adhesion properties between semi-conductive LSR and insulating LSR for high voltage application of pre-molded joint (PMJ). In order to understand the dielectric breakdown characteristics, we used the sheet samples and the paired type rogowski insert electrode system. The breakdown strength and adhesion strength of LSR (E-3) were superior to those of several silicone rubbers. Adhesion strength could be improved by curing at high temperature without post-curing process or enhanced by post-curing process. When LSR (E-3) was cured at $(150^{\circ}C{\times}10min$ semi-conductive )${\times}$ ($175^{\circ}C{\times}10min$ insulation), it showed the high breakdown strength with low standard deviation, and good adhesion strength. In this results, we could apply this process to the fabrication of PMJ without post-curing.

  • PDF

Electric Field Analysis of Power Cable Joint Point using Boundary Element Method (경계요소법을 이용한 전력케이블 접속부의 전계해석)

  • 조경순
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.579-588
    • /
    • 2003
  • There are many unfavorable conditions that lead to shortening life of cable by causing dielectric breakdown and aging such as field concentrations occurring in intermediate materials linking each cables, penetration of various impurities, and undermining of cable insulation layers. This paper simulated investigated partial discharge properties of XLPE which is widely used for ultra high voltage cable insulation materials and EPDM which is being used as insulation layer of cable joint materials kit, using Boundary Element Method. The result of computer simulation showed that inner-Void defect caused silicone oil to weaken the E-field effect. and we also found that E-field distribution in EPDM remained relatively lower than that in XLPE.

  • PDF

Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length (다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산)

  • Lee, Ji-Kwang;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

Study on the Evaluation Methode of HVDC Cable (HVDC 케이블 평가방법 연구)

  • An, Y.H.;Jang, T.I.;Jung, G.J.;Yu, H.Y.;Kim, J.N.;Jeon, S.I.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.229-231
    • /
    • 2005
  • HVDC(High Voltage Direct Current) is an underwater cable between Jeju Island and Haenam in main land and supplies approximately 50% of electrical usage in Jeju Island. If there is any power failure due to HVDC, it will cost approximately 50,000 US dollars per day including Thermal Electrical Generation. Therefore it is absolutely necessary to recover the problem in rapid timely basis. In conclusion, evaluation methode of HVDC cable is needed urgently to upgrade current HVDC underwater cable repair technique in Korea to minimize the cost and time factors.

  • PDF

Development of Restraining-unit of Sheath Circulating Current and Its Electrical Characteristics (시스 순환전류 저감장치의 개발 및 전기적 특성 검토)

  • Ha C. W.;Kim J. N.;Kim D. W.;Kang J. W.;Kim J. S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.394-396
    • /
    • 2004
  • In order to reduce the sheath circulating current, same arrangement and balanced length of cable are required for the underground cable system. But practically, changing the whole arrange of cable which is already constructed is impossible. Therefore, It is necessary to apply the restraining-unit of sheath circulating current at the cross-bonding wire of insulated joint because the impedance of restraining-unit is able to reduce sheath circulating current at a normal condition. Even at a transient state, the restraining-unit must maintain electrical and mechanical characteristics. In this paper, the features of restraining-unit developed by LG Cable as well as the electrical test results are described. It proves that the restraining-unit is applicable to the underground cable system where sheath circulating current rises.

  • PDF

Calculation of DC resistance of strand-to-strand joints for KSTAR (KSTAR 용 소선-소선 접합부의 직류저항 계산)

  • Ho-Jin Lee;Hyun-Il Nam;Ki-Baik Kim;Gye-Won Hong
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • Since the strand-to-strand type joint far CICC (Cable-In-Conduit Conductor) is small in size and has low DC resistance, it is expected to be useful type fur a superconducting magnet system which had a compact structure like the KSTAR (Korea Superconducting Tokamak Advanced Research) coil system. The DC resistance is changed according to the distribution patterns of strands in cables connected together in the joint. A commercial code was used for the calculation of the DC resistance. With the decrease of outer diameter of the Joint, Which means the increase of strand volume fraction in the joint, the calculated DC resistance decrease rapidly and non-lineally. The variation of resistance depends mainly on the volume fraction of solder which has higher resistivity than copper. The resistance decrease inversely with the increase of the length of the joint. The resistance increase with increase of number of triplets in each stack contacted with that of another terminal cable. In case of the strand-to-strand joint that has 62mm of outer diameter, 52mm of inner diameter, 100mm of overlap length, and four triplets in each stack, the calculated DC resistance is less than 1 n-Ohm.

  • PDF