• Title/Summary/Keyword: Cable Impedance

Search Result 132, Processing Time 0.028 seconds

mechanism of Equivalent Power Distribution in Parallel Connected ICP for Large Area Processing

  • Lee, Jin-Won;Bae, In-Sik;An, Sang-Hyeok;Jang, Hong-Yeong;Yu, Sin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.510-510
    • /
    • 2012
  • 반도체, 디스플레이, 태양광 등의 공정에서 사용되는 웨이퍼의 크기가 증가하고, 생산률이 플라즈마의 밀도에 비례한다는 연구 결과가 발표되면서 대면적 고밀도 플라즈마 소스 개발에 대한 연구가 활발히 진행되고 있다. 특히, ECR, ICP, Helicon plasma 등 고밀도 플라즈마 소스에 대한 관심이 높아지고 있다. 이에 따라, 여러 개의 ICP를 결합한 multiple ICP를 이용해 대면적 고밀도 플라즈마 소스 개발을 진행했다. Multiple ICP의 경우 각 ICP 소스에 같은 power (current)를 공급해야만 균일한 플라즈마 방전이 발생되어 균일도를 확보 할 수 있다. Current controller 같은 추가적인 장비를 설치하지 않고, power를 분배하는 transmission line을 coaxial 형태로 설계하고 같은 길이로 병렬 연결함으로써 각각의 ICP소스에서 균일한 플라즈마를 방전시킬 수 있었다. Power generator에서 보는 각 ICP의 total impedance는 각 ICP 소스의 impedance와 coaxial 형태의 transmission line의 characteristic impedance, frequency, 길이의 함수로 구할 수 있고, 이 total impedance가 일정하기 때문에 current가 균등하게 분배되어 각 ICP소스에 균등한 power 분배가 가능한 것이다. 실질적으로 ICP 소스의 impedance는 플라즈마 방전 유무에 따라 변화하기 때문에 일정하게 유지하는 것은 어렵다. Transmission line의 characteristic을 사용함으로써 ICP의 impedance의 변화에 상관없이 Total impedance를 일정하게 유지시킴으로써 균등한 power 분배가 가능하다는 것을 연구했다. Frequency는 13,56MHz, characteristic impedance를 $50{\Omega}$ (coaxial cable)으로 고정하고, ICP 소스의 플라즈마 방전 유무/antenna turn/소스 위치에 따른 total impedance를 transmission line의 길이에 따라 측정하고, 이를 이론값, 그래프와 비교하였다. 특정 length에서 플라즈마 방전 유무(ICP의 impedance 변화)와 상관없이 비교적 일정한 total impedance를 유지하는 것을 확인 했다. 이것은 특정 길이를 갖는 coaxial형태의 transmission line를 연결하면, total impedance는 플라즈마 방전 유무로 발생하는 ICP의 impedance 변화와 상관없이 일정하게 유지되어 각 ICP소스에 균등한 파워 분배가 가능하다는 것을 보여준 결과이다. 이것을 토대로 frequency에 따라(또는 characteristic impedance에 따라) 균등한 파워 분배가 가능한 coaxial 형태 transmission line의 특정 길이를 구할 수 있고, 대면적 소스에서 균등한 파워 분배를 위한 병렬연결에 적용할 수 있을 것이다.

  • PDF

A Study on the Reduction Methods of Sheath Circulating Current using the Reduction Equipment in Underground Transmission Systems (지중송전계통에서 저감장치를 이용한 시스 순환전류 저감방안에 관한 연구)

  • Gang, Ji-Won;Yang, Hae-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.474-481
    • /
    • 2002
  • Sheath circulating current is increased in the change of sheath mutual impedance which is caused by unbalanced cable system, and different section length between joint boxes. If excessive current flows in sheath, sheath loss which is reduced the transmission capacity is produced. Recently, excessive sheath circulating current was partially measured in underground cable systems of KEPCO. Accordingly, actual schemes to reduce excessive sheath circulating current are urgently required for installed cable system as well as newly-installing cable systems. This paper describes the relation analysis of sheath circulating current and burying types. And also, various schemes to reduce excessive circulating current using EMTP/ATPDraw and applicable schemes are proposed through a detailed analysis regarding cable systems by considering various electrical and environmental factors. It is evaluated that the proposed reduction schemes can be effectively applied to reduce the excessive sheath circulating current with the minimized electrical problems. And reduction effect is Proved with sheath circulating current reduction equipment.

Evaluation on the Properties of the Current Transporting Part for Fault-Current-Limiting Type HTS Cables (사고전류 제한형 고온 초전도케이블의 통전부 특성평가)

  • Kim, Tae-Min;Hong, Gong-Hyun;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.657-661
    • /
    • 2014
  • When an abnormal condition occurs due to a fault current at a consumer location where electricity is supplied through high-Tc superconducting(HTS) cable, the HTS cable would be damaged if there is no appropriate method to protect it. The fault-current-limiting type HTS cable that is suggested in this study has a structure of transport part and limit part. It conduct a zero impedance transport current at ordinary operations and carry out a fault current limiting at extraordinary operations. To make a perfect this structure, it is essential to investigate electrical properties of transport part that comprise the fault-current-limiting type HTS cable. In this paper, transport part that comprise HTS wire with copper stabilization layer is examined the current transport properties and the stability evaluation.

Development of Digital Distance Relay Algorithm Using Fuzzy Inference System on Underground Power Cable Systems (퍼지추론 시스템을 이용한 지중송전계통 보호용 디지털 거리계전 알고리즘 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.502-503
    • /
    • 2006
  • If the fault occurs on the underground Power cable system, the fault current on the sheath has the influence on all sections because it's returned through earth at the directly grounded point and operation point of SVL(Sheath Voltage Limiter) at joint box. Therefore, the earth resistance and the operation of SVL have an effect on the zero-sequence current. Then the impedance between relaying point and fault point is Increased. That causes the overreach of distance relay. For these reasons, the distance relay algorithm for protecting of the underground power cable systems was developed. It effectively advance the errors using ACI(Advanced Computing Intelligence) technique. In this algorithm, the optimization was performed by fuzzy inference system and genetic algorithm.

  • PDF

A Study on the HTS Distribution Cable System Modelling and the Current Distribution of Layers (초전도 케이블 시스템 구성과 레이어의 전류 분배에 관한 연구)

  • Kim, Nam-Yoel;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.315-318
    • /
    • 2002
  • The use of high-temperature superconducting materials for transmission cable application is being realized in prototype situation. HTS cable systems have been installed in laboratories and tested successfully around the world. In korea. the first step in development of superconducting cables is distribution system. In this paper. it is proposed the HTS distribution system modeling using ATPDraw and EMTDC programs. In the multilayer conductor, the inner layers have higher impedance than the outer layers. As a result, the current concentrate$ in the outer layers. This paper presents the result of the current distribution in EMTDC.

  • PDF

Analysis of PD Characteristics by Types of Insulation Defects in Power Cables (전력케이블의 절연결함에 따른 부분방전 특성분석)

  • Choi, Jae-Sung;Park, Chan-Yong;Kim, Sun-Jae;Han, Ju-Seop;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1977-1983
    • /
    • 2009
  • This paper described partial discharge(PD) patterns depending on types of insulation defects in CNCO-W cable(Concentric Neutral Closs-linked Polyethylene Insulated Polyolefin-Water Proof Sheathed Power Cable). The PD measurement system consists of a coupling network, a detection impedance, and a low noise amplifier. A 16 bit, 250 MS/s data acquisition system was used to analyze PD patterns. To simulate insulation defects in a power cable, a needle with the curvature radius of $10{\mu}m$ was inserted into the insulation part. We measured phase ($\Phi$), magnitude (q), and counts (n) of PD pulse for the defects, and classified PD patterns using the PRPD (phase Resolved Partial Discharge) method. From the analysis of acquired PD signals, we could find that a unique PD pattern is formed according to the types of defect.

  • PDF

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho, Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.357-364
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. Specimen obtained 1mm thickness from the insulation of real power cable and cable joint. <중략>The partial discharges are measured to determine their time dependence for 60 minutes and the influence of applied electrical stress under 30kV. $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF

A Study on Characteristics of Overhead Rigid Conductor System for Developing the High-speed System up to 250km/h (250km/h급 강체전차선로 시스템 개발을 위한 R-BAR 특성 고찰)

  • Bae, Sang-Joon;Jang, Kwang-Dong;Lee, Ki-Won;Park, Youn-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.492-497
    • /
    • 2015
  • An overhead rigid conductor system is mainly applied to the subway and recently studies on the rigid system have been conducted for applications such as tunnels of high-speed line and speed improvement of a conventional lines up to 250km/h. Power feeding performance which is the most important in a rigid system can be measured by contact force and characteristics of this contact force are related to the shape and material of the R-BAR. In this paper, we analyze the measurements of contact force, current heating temperature, impedance of a rigid conductor which was developed in Korea, after that we compare static characteristics of home and abroad rigid conductors which have various shapes and materials.

Localization of Concentric Neutrals Corrosion on Live Underground Power Cable Based on Time-frequency Domain Reflectometry (시간-주파수 영역 반사파 계측법 기반 활선 상태 지중 전력 케이블의 중성선 결함 위치 추정 연구)

  • Lee, Chun Ku;Yoon, Tae Sung;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • In this paper, we propose a time-frequency domain reflectometry (TFDR) based measurement method for localizing concentric neutrals corrosion on live underground power cable. It consists of two inductive couplers which can transmit the reference signal into live underground power cable and measure the reflected signals from the impedance discontinuities of concentric neutrals corrosion. In order to compensate the dispersion of the measured reflected signal via inductive coupler, an equalizer based on Wiener filtering is designed. To improve the localizing performance of concentric neutrals corrosion in the vicinity of the measurement point, the reference signal is removed from the measured reflected signals. The localization performance of the proposed method is verified by the concentric neutrals corrosion localization experiment.

Impedance Characteristics of Overhead Medium-Voltage Power lines for Power Line Communication (전력선통신을 위한 고압 배전선로의 임피던스 특성)

  • Chun Dong-wan;Park Young-jin;Kim Kwan-ho;Shin Chull-chai
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.67-78
    • /
    • 2005
  • In this paper, impedance characteristics of overhead medium-voltage (MV) power line for power line communication (PLC) is analyzed. For analysis, a two-port equivalent network model of MV power lines is derived. By applying the equivalent model and basic transmission line theory, input impedance at the signal induction part is calculated. And also calculated input impedance of power line itself that the medium voltage coupler and coaxial cable effect are removed. For verification, impedance of power lines is measured at a test field for an MV PLC. The results show that impedance of MV power line itself is between $200\;{\Omega}\;and\;300\;{\Omega}$ and converges to a half of their characteristic impedance with increasing frequency. And also measured data is very similar to calculated data.