• Title/Summary/Keyword: Cable Force

Search Result 351, Processing Time 0.028 seconds

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao;Xu, Yan Wei;Gao, Hui;Chen, Zheng Qing;Xu, Kai;Zhao, Shun Bo
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.627-639
    • /
    • 2019
  • Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

Displacement Control Technique of Pre-stressable Cable Structures by Force Method (하중법을 이용한 케이블 구조물의 변위제어기법에 관한 연구)

  • Shon, Su-Deok;Kwan, Alan S.K.;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 2011
  • A cable structures have the advantage that cover a large space without column but it is very sensitive to deal with shape control because of its flexibility. Especially, location of control member and needed elongation of member are important things. Therefore, the purpose of this paper is studied on displacement control technique for pre-stressed cable structures by force method considering order of control. The layout of this paper is as follows. Firstly, in section 2, the control technique by force method for cable structures is given. Secondly, section 3 briefly introduces simple cable net in order to apply control technique considering ordering of actuator. Finally, more complex example for effective member and the conclusion are in section 4 and 5, respectively.

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

Effect of Flexible Cable and Friction Force of Small Form Factor Hard Disk Drive (소형 하드디스크 드라이브의 유연 케이블과 마찰력에 의한 영향에 대한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Kim, Ki-Hoon;Lee, Sang-Jik;Park, Young-Pil;Park, No-Cheol;Park, Kyoung-Su;Jung, Moon-Gyo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In recent years, the demand for portable digital devices such as cellular phone, digital camera, and MP3 player has been largely increased. To meet the requirements of such portable applications the information storage devices with smaller size, higher capacity, and lower power consumption are needed. A small form factor (SFF) HDD using a load/unload (L/UL) system is one of the appropriate alternatives to satisfy these requirements. Due to complexity of L/UL process and mechanism, it is required to investigate for better understanding the effects of design parameters. Among the various design parameters, flexible cable and friction force on the L/UL ramp become important to the dynamic characteristics of L/UL process as the system is miniaturized. The program for L/UL simulation which considers the effect of flexible cable and L/UL ramp is needed. Unfortunately, there is hardly any commercial program for the L/UL simulation except the Computer Mechanics Laboratory (CML) air bearing design program and the CML L/UL simulation code. Furthermore, the design parameters such as flexible cable and the L/UL ramp are not considered in the CML L/UL simulation code. So we embody the L/UL simulation considering flexible cable and an L/UL ramp by using the ANSYS/LS-DYNA. In this thesis, the effects of flexible cable and friction force on the dynamic characteristics and the performances of the L/UL process are studied. Numerical simulation and related experiments are carried out and compared each other.

  • PDF

Identification of Energized status of Underground Power Cable (지중 전력 케이블 가압 상태 진단)

  • 김창교;홍진수;정영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.69-72
    • /
    • 1998
  • A study to identify the energized status of the 22.9kV underground power cable by the detection of vibration was reformed. We derived that there exists vibration at double the line frequency in live cables by electromagnetic force. The vibration can be picked up by accelerometer sensor. A prototype was tested on the underground distribution system in Chonan Station, KEPCO. The results are presented and suggest the applicability of the detecting device.

  • PDF

Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation (축방향 변형을 고려한 사장교의 초기평형상태 해석)

  • Kim, Je Choon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2002
  • The study proposed the initial equilibrium state analysis method that considers axial deformation, in order to accurately determine the initial shape of a cable-stayed bridge. Sepecifically, the proposed method adopted the successive iteration method. In order to evaluate appropriate initial cable force introduced in the initial equilibrium state analysis, parametric studies were performed and a useful linear analysis method proposed. The geometrically nonlinear static behaviors of cable-stayed bridges were considered, using three-dimensional frame element and elastic catenary cable element. The usefulness and applicability of the analytic method proposed in this study were demonstrated using numerical examples, including a real cable-stayed bridge. The algorithm, is applicable in cases wherein axial deformation is not adopted in the fabrication camber, or final cable force is adjusted to eliminate construction and fabrication errors occurring during construction.

A Study on Shape Determination of Cable-Net Structures with Restrained Conditions (제한조건을 갖는 케이블-네트 구조물의 형상결정에 관한 연구)

  • 이장복;권택진;하창우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.325-332
    • /
    • 1999
  • As part of the conceptual disign of cable and membrane structures, the adequate shape is decisive with respect to load bearing behaviour and aesthetic expression of the structure. The force densities which are the force-length ratio are very useful parameters for the description of equilibrium state of any general cable-net structures. Because equilibrium states are obtained by solving linear equations the force desity method has a advantage compared with other solution strategies. But if there are futher restrainted conditions in force density the linear method will be extended to nonlinear one. The numeriacl methods are based upon least square and general inverse method for sieving nonlinear eqations. In this paper, the results from two methods is compared through several examples.

  • PDF

Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique

  • Kim, Jeong-Tae;Nguyen, Khac-Duy;Huynh, Thanh-Canh
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.381-397
    • /
    • 2013
  • In this paper, wireless health monitoring of stay cables using piezoelectric strain sensors and a smart skin technique is presented. For the cables, tension forces are estimated to examine their health status from vibration features with consideration of temperature effects. The following approaches are implemented to achieve the objective. Firstly, the tension force estimation utilizing the piezoelectric sensor-embedded smart skin is presented. A temperature correlation model to recalculate the tension force at a temperature of interest is designed by correlating the change in cable's dynamic features and temperature variation. Secondly, the wireless health monitoring system for stay cables is described. A piezoelectric strain sensor node and a tension force monitoring software which is embedded in the sensor are designed. Finally, the feasibility of the proposed monitoring technique is evaluated on stay cables of the Hwamyung Grand Bridge in Busan, Korea.

Modified nonlinear force density method for form-finding of membrane SAR antenna

  • Xu, Rui;Li, DongXu;Liu, Wang;Jiang, JianPing;Liao, YiHuan;Wang, Jie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1045-1059
    • /
    • 2015
  • Form-finding for cable-membrane structures is a delicate operation. During the last decades, the force density method (FDM) was considered to be an efficient method to address the problem. Many researchers were devoted to improving this method and proposed many methods such as natural force density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient and precise.