• Title/Summary/Keyword: Cable Force

Search Result 351, Processing Time 0.025 seconds

Preliminary Form Design of Cable Structure using Computer Graphics (컴퓨터 그래픽스를 이용한 케이블 구조의 초기형태 설계)

  • Kim, Nam-Hee;Koh, Hyun-Moo;Hong, Sung-Gul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.375-382
    • /
    • 2011
  • Nowadays computer graphic softwares have opened a lot of potential by providing parametric modeling and generative algorithms which are useful not only to describe various geometrical shapes but also to implement a designer's intent in terms of modules systematically. This study has proposed a way of developing a module for generating preliminary structural configuration using such potential computer graphics. Especially parametric modeling and generative algorithm are utilized to define various design alternatives, and moreover use of dynamic graphics enables designers to generate a structural form on one side and a force flow diagram correspondingly provided on the other. This ultimately leads to rational preliminary design of a structural form considering its force flow.

A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods (랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구)

  • Jangseob, Choi;Dongho, Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

Analysis on Bond Characteristics of Reinforcements for UHPC Hybrid Cable-Stayed Bridge Deck Joints (초고성능 콘크리트 하이브리드 사장교 바닥판 접합부 철근의 부착 성능에 대한 해석)

  • Seonwoo, Yoon Ho;Park, Sung Kyun;Kwahk, Im Jong;Yoon, Young Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.207-214
    • /
    • 2011
  • Ultra High Performance Concrete (UHPC), which is characterized by its high strength and advanced ductile behavior that is much superior to those of convention concrete, is a useful material to make thinner and longer bridges. The precast segmental construction method utilizing UHPC has been mainly studied because cast-in-place UHPC is very difficult and complicate to be achieved. As a part of those research, the structural performance evaluation of different types of joint connection method for hybrid cable-stayed bridge utilizing UHPC by using nonlinear analyses is performed in this study. The bond stress at joint is obtained by section force analyses for a 600 m cable-stayed bridge deck, and compared with the required bond stress at joint. Analysis results show that the U Type connection and straight type connection resist the highest ultimate load and bond strength, respectively. In addition, all considered joint connection systems satisfy the bond performances at joint required in the final stage of cable-stayed bridge utilizing UHPC.

Study on selection and basic specifications design of shield TBM for power cable tunnels (터널식 전력구 쉴드TBM 선정 및 기본설계 사양 제시에 관한 연구)

  • Jung Joo Kim;Ji Yun Lee;Hee Hwan Ryu;Ju Hwan Jung;Suk Jae Lee;Du San Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2023
  • Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.

A study of Operation Criteria of Tower-crane for Automatic Transportation Considering Swung Member (양중작업 자동화를 위한 부재진동에 따른 타워크레인의 작업가능 기준 연구)

  • Shin, Yoon-Seok;Jin, Il-Guan;An, Sung-Hoon;Cho, Hun-Hee;Kang, Kyung-In
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.108-116
    • /
    • 2008
  • At present, construction automation is a critical solution for the shortage of labor and the aging of skilled workers. Especially, researches for transportation automation are achieved to improve the efficiency as the construction of tall-building construction. Transportation automation needs to control the swung member by the inertia and/or the wind-force at the end of cable. However, previous to control, the presupposition of the swing is heavily difficult work because the inertia and the wind force are irregularly changable according to work condition. Therefore, in this study, dynamic modeling of crane and simulation was performed to find the characteristic of the swing. In the result, the maximum displacement of the swung material was analyzed. And, on the basis of analysis, the criteria to decide workability of automated transportation considering the material size and the wind force onsite was proposed.

An estimated angle of attack of a cambered otter board in a bottom trawl using three dimensional position (저층 트롤에서 3차원 위치를 이용한 만곡형 전개판의 영각 추정)

  • Go, Gwang Su;Chol, Bong Kon;Bae, Jae Hyun;Cho, Seong-Ok;Won, Sung-Jae;Yoon, Hong Keun;Park, Hae-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.26-34
    • /
    • 2015
  • The angle of attack of a cambered otter board in a bottom trawl was estimated using a three-dimensional semi-analytic treatment of a towing cable (warp) system that was applied to the field experiments of a bottom trawl obtained by the Scanmar system. The equilibrium condition of the horizontal component and vertical component of forces was used to the three forces acting on the otter board in the horizontal plane. Those forces were the force on the warp at the bracket, hydrodynamic lift and drag forces on the otter board and the force on the hand rope attached just behind the otter board. Also the equilibrium of moment about the front edge of the otter board was used to find out the angle of attack of the cambered otter board. When the warp length was 120m and 180m long and the towing speed was between 1.23 and 1.90 m/s, the estimated angle of attack of the cambered otter board was ranged between $26.1^{\circ}$ and $29.6^{\circ}$, respectively, though the maximum lift force was at the angle of attack $22.6^{\circ}$. The angle of attack of the otter board was tended to increase weakly with the longer length of warp (180 m) at the same towing speed in the experiment.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment

  • Ma, Lin;Zhou, Dajun;Han, Wanshui;Wu, Jun;Liu, Jianxin
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.211-234
    • /
    • 2016
  • Super long-span bridges provide people with great convenience, but they also bring traffic safety problems caused by strong wind owing to their high decks. In this paper, the large eddy simulation together with dynamic mesh technology in computational fluid dynamics (CFD) is used to explore the mechanism of a moving vehicle's transient aerodynamic force in crosswind, the regularity and mechanism of the vehicle's aerodynamic forces when it passes through a bridge tower's wake zone in crosswind. By comparing the calculated results and those from wind tunnel tests, the reliability of the methods used in the paper is verified on a moving vehicle's aerodynamic forces in a bridge tower's wake region. A vehicle's aerodynamic force coefficient decreases sharply when it enters into the wake region, and reaches its minimum on the leeward of the bridge tower where exists a backflow region. When a vehicle moves on the outermost lane on the windward direction and just passes through the backflow region, it will suffer from negative lateral aerodynamic force and yaw moment in the bridge tower's wake zone. And the vehicle's passing ruins the original vortex structure there, resulting in that the lateral wind on the right side of the bridge tower does not change its direction but directly impact on the vehicle's windward. So when the vehicle leaves from the backflow region, it will suffer stronger aerodynamic than that borne by the vehicle when it just enters into the region. Other cases of vehicle moving on different lane and different directions were also discussed thoroughly. The results show that the vehicle's pneumatic safety performance is evidently better than that of a vehicle on the outermost lane on the windward.

Analytical study of composite steel-concrete beams with external prestressing

  • Turini, Thiago T.;Calenzani, Adenilcia F.G.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.595-609
    • /
    • 2022
  • Prestressed composite steel-concrete beams are still a technology restricted to repair sites of large-scale structures and spans. One of the reasons for that is the absence of standard frameworks and publications regarding their design and implementation. In addition, the primary normative codes do not address this subject directly, which might be related to a scarcity of papers indicating methods of design that would align the two technics, composite beams and external prestressing. In this context, this paper proposes methods to analyze the sizing of prestressed composite beams submitted to pre-tension and post-tension with a straight or polynomial layout cable. This inquiry inspected a hundred and twenty models of prestressed composite beams according to its prestressing technology and the eccentricity and value of the prestressing force. The evaluation also included the ratio between span and height of the steel profile, thickness and typology of the concrete slab, and layout of the prestressing cables. As for the results, it was observed that the eccentricity of the prestressing force doesn't significantly influence the bending resistance. In prestressed composite beams subjected to a sagging moment, the ratio L/d can reach 35 and 30 for steel-concrete composite slabs and solid concrete slabs, respectively. Considering the negative bending moment resistance, the value of the L/d ratio must be less than or equal to 25, regardless of the type of slab. When it comes to the value of the prestressing force, a variation greater than 10% causes a 2.6% increase in the positive bending moment resistance and a 4% decrease in the negative bending moment resistance. The pre-tensioned composite beams showed a superior response to flexural-compression and excessive compression limit states than the post-tensioned ones.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.