• Title/Summary/Keyword: Cable Force

Search Result 351, Processing Time 0.026 seconds

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

A Study on Applicability of Wireless Impedance Sensor Nodes Technique for Tensile Force Monitoring of Structural Cables (구조용 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드 기술의 적용성에 관한 연구)

  • Park, Jae-Hyung;Hong, Dong-Soo;Kim, Jeong-Tae;Na, Won-Bae;Cho, Hyun-Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.21-31
    • /
    • 2010
  • In this study, a technique that uses wireless impedance sensor nodes is proposed to monitor tensile force of structural cable. To achieve this goal, the following approaches were implemented. First, a wireless impedance sensor node was designed for automated and cost-efficient prestress-loss monitoring. Second, an impedance-based algorithm was embedded in the wireless impedance sensor node for autonomous structural health monitoring of structural cables. Third, a tensile force monitoring technique that uses an interface plate for structural cables was proposed to overcome the limitations of the wireless impedance sensor node such as its narrow-band measurable frequency ranges. Finally, the applicability of the wireless impedance sensor node and the technique that uses the interface washer were evaluated in a lab-scaled prestressed concrete (PSC) girder model with internal and external tendons for which several prestress-loss scenarios were experimentally monitored with the wireless impedance sensor nodes.

A Clamping Force Estimation Method in Electric Parking Brake Systems (전자 제어식 주차브레이크 시스템의 제동력 추정 기법)

  • Jang, Min-Seok;Lee, Young-Ok;Lee, Won-Goo;Lee, Choong-Woo;Son, Young-Sup;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2291-2299
    • /
    • 2008
  • Hall effect force sensors have been used to measure clamping force in conventional Electric Parking Brake(EPB) systems. Estimation of clamping force without the sensors has drawn attentions due to mounting space limitations and cost issues. Removing the sensor requires the estimation of the initial contact point where the clamping force is effectively applied to the brake pads. In this paper, we propose how to estimate the initial contact point finding the relation between the angular velocity of an actuator and the initial contact point. For force estimation a look-up table is used as a function of the displacement of parking cable from the initial contact point. The proposed method is validated by experiments. From the experimental results we observe that the proposed method satisfies the specifications. The designed method is also able to estimate clamping force although parking cables are loosened and brake pads are worn out. Applying the proposed method enables manufacturing of low cost EPB systems.

Displacement and force control of complex element structures by Matrix Condensation

  • Saeed, Najmadeen M.;Kwan, Alan S.K.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.973-992
    • /
    • 2016
  • A direct and relatively simple method for controlling nodal displacements and/or internal bar forces has been developed for prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation, in which structural matrices being built up from matrices of elementary elements. The method is aimed at static shape control of geometrically sensitive structures. The paper discusses identification of the most effective bars for actuation, without incurring violation in bar forces, and also with objective of minimal number of actuators or minimum actuation. The advantages of the method is that the changes for both force and displacement regimes are within a single formulation. The method can also be used for adjustment of bar forces to either reduce instances of high forces or increase low forces (e.g., in a cable nearing slack).

Buckling Analysis using Fictitious Axial Forces and Its Application to Cable-Stayed Bridges with HSB800 Steel (가상축력을 이용한 좌굴해석 및 HSB800 강재를 적용한 사장교에 대한 적용성 분석)

  • Choi, Dong Ho;Yoo, Hoon;Gwon, Sun Gil;Lim, Ji Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • System buckling analysis is usually used to determine the critical buckling load in the buckling design of cable-stayed bridges. However, system buckling analysis may yield unexpectedly large effective lengths of the members subjected to a relatively small axial force. This paper proposes a new method to determine reasonable effective lengths of girder and tower members in steel cable-stayed bridges using fictitious axial forces. An improved inelastic buckling analysis with modified tangent modulus is also presented. The effective lengths of members in example bridges calculated using the proposed method are compared with those obtained using the conventional buckling analysis method. The proposed method provides much more resonable effective lengths of the members. When girder and tower members are built with HSB800 steel instead of conventional steel, the effective lengths of the members under a small axial force slightly decreases in the inelastic buckling analysis without fictitious axial forces, while the proposed method that considers fictitious axial forces provides almost no changes in such lengths.

Study on the effect of cable on the lateral behavior of S-shaped Pedestrian-CSB (S형 보도사장교의 케이블이 횡방향 거동에 미치는 영향 연구)

  • Ji, Seon-Geun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.577-584
    • /
    • 2019
  • Recently, CSB(Cable-Stayed Bridge) have been attempted to be atypical forms for landscape elements in Korea. CSB with new geometry need to analyze their characteristics clearly to ensure structural safety. This study's bridge is the S-shaped curved pedestrian CSB that has a girder with S-shape plane curve and reverse triangular truss cross section, inclined independent pylon, modified Fan type main cable and vertical backstay cable. Curved CSB can have excessive lateral displacement and moment when the tension is adjusted, focusing only on longitudinal behavior, such as a straight CSB. In order to analyze the effect of the cable on the lateral behavior of bridges, the cable is divided into two groups according to the lateral displacement direction of the pylon due to tension. The influence of the combination ratio of GR1 and GR2 on the girder, bearing, pylon, and vertical anchor cable was analyzed. When the tension applied to the bridge is 1.0GR1 plus 1.0GR2, In the combination of 1.2GR1 plus 0.8GR2, the stress on the left and right upper member of the truss girder and the deviation of the both were minimized. In addition, the horizontal force of the bearing, the lateral displacement and moment of the pylon, and the tension of the vertical backstay cable also decreased. This study is expected to be used as basic data for determination of tension of CSB with similar geometry.

Analytical Study of Geometric Nonlinear Behavior of Cable-stayed Bridges (사장교의 기하학적 비선형 거동의 해석적 연구)

  • Kim, Seungjun;Lee, Kee Sei;Kim, Kyung Sik;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.1-13
    • /
    • 2010
  • This paper presents an investigation on the geometric nonlinear behavior of cable-stayed bridges using geometric nonlinear finite element analysis method. The girder and mast in cable-stayed bridges show the combined axial load and bending moment interaction due to horizontal and vertical forces of inclined cable. So these members are considered as beam-column member. In this study, the nonlinear finite element analysis method is used to resolve the geometric nonlinear behavior of cable-stayed bridges in consideration of beam-column effect, large displacement effect (known as P-${\delta}$ effect) and cable sag effect. To analyze a cable-stayed bridge model, nonlinear 6-degree of freedom frame element and nonlinear 3-degree of freedom equivalent truss element is used. To resolve the geometric nonlinear behavior for various live load cases, the initial shape analysis is performed for considering dead load before live load analysis. Then the geometric nonlinear analysis for each live load case is performed. The deformed shapes of each model, load-displacement curves of each point and load-tensile force curves for each cable are presented for quantitative study of geometric nonlinear behavior of cable-stayed bridges.

Dynamic Non-Linear Analysis of Ocean Cables Subjected to Earthquakes (지진력을 받는 해양케이블의 동적 비선형해석)

  • 김남일;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1999
  • In the previous $paper^{(1),(2)}$, a geometrically non-linear finite element formulation of spatial cables subjected to self-weights and support motions was presented using multiple noded cable elements and how to determine the initial equililbrium state of cables was addressed. In this paper, in order to perform dynamic non-linear analysis of ocean cables subjected to support motions and earthquakes, a numerical method to calculate Morison forces and incorporate effects of earthquake motions is presented based on the Newmark method. Challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to support motions and earthquake loadings.

  • PDF