• Title/Summary/Keyword: Cable Fire

Search Result 140, Processing Time 0.023 seconds

Experimental testing and evaluation of coating on cables in container fire test facility

  • Aurtherson, P. Babu;Hemanandh, J.;Devarajan, Yuvarajan;Mishra, Ruby;Abraham, Biju Cherian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1652-1656
    • /
    • 2022
  • Fire tests were conducted on cables using fire-retardant paint employed in nuclear power plants that transmit electrical power, control and instrument signals. The failure criteria of various power and control cables coated with fire retardant coating at three different coating thicknesses (~0.5 mm, 1.0 mm & 1.5 mm) were studied under direct flame test using Container Fire Test Facility (CFTF) based on standard tests for bare cables. A direct flame fire test was conducted for 10 min with an LPG ribbon burner rated at ten by fixing the cable samples in a vertical cable track. Inner sheath temperature was measured until ambient conditions were achieved by natural convection. The cables are visually evaluated for damage and the mass loss percentage. Cable functionality is ascertained by checking for electrical continuity for each sample. The thickness of cable coating on fire exposure is also studied by comparing the transient variation of inner sheath temperature along the Cable length. This study also evaluated the adequacy of fire-retardant coating on cables used for safety-critical equipment in nuclear power plants.

Cable Functional Failure Time Evaluation for a Main Control Room Fire using Fire Dynamic Simulator (FDS 이용한 주제어실 화재시 케이블 기능상실시간 평가)

  • Lim, Heok-Soon;Kim, In-Hwan;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • Serious electrical problems, such as shorts, ground faults, or circuits, often cause fire events in the fire proof zone of nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety-related systems and equipment. The fire event can be treated with the basic design principle that safety systems should maintain their functions with redundancy and independency. In the case of a cable fire in the main control room, operators cannot perform their mission properly and can misjudge the situation because of spurious operation, incorrect indication or instrument. These would deteriorate the plant capabilities of safety shutdown and result in disastrous conditions. Therefore, during a main control room fire, 5 minutes of operator action time is very important to operate the safety shutdown components. This paper describes the cable functional failure temperature criteria and conducted a cable functional failure time evaluation using Fire Dynamic Simulator to obtain the operator action time for a main control room fire.

The development of fire protection trough (밀폐형 방재트러후 개발)

  • Hwang, S.C.;Kim, T.K.;Go, C.S.;Han, K.J.;Kim, D.B.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1168-1170
    • /
    • 1993
  • EHV underground transmission cable characterized by low loss and bulk capacity should have high reliability to be protected fully from external damages, not to speak of its quality. In 345kV underground transmission lines of our country, the usage of frie protection trough is standardized. Fire protection trough consists of combination of trough body, spacer, shutting board, fastener, and etc. and it is required to have a high level of fire-retardant characteristics and mechanical strength. Since 1992, we, GoldStar Cable, with collaboration of Lucky, have participated in the development of fire protect ion trough and completed the type test of manufacturing site and will be supposed to go into mass product within 1993.

  • PDF

Fire Cause Reasoning of Self-regulating Heating Cable by a Fire Investigation Applying the Scientific Method and Fault Tree Analysis (과학적 방법을 적용한 화재조사와 결함수 분석을 이용한 정온전선의 발화원인 추론)

  • Kim, Doo-Hyun;Lee, Heung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.73-81
    • /
    • 2016
  • A self-regulating heating cable is an electrical heating element by flowing an electric current between parallel conductors filled with an extruded semi-conductive polymer. Self-regulating heating cables are used mainly for frost protection purposes because the construction is convenient and the price is low. On the other hand, structural problems with imperfections of the insulation can cause a fire despite their usefulness. This paper deduced a direct method to derive the cause by investigating the scene of a fire due to a self-regulating heating cable and analyzed the basic problem using fault tree analysis. In this paper, the actual fire scene was a cold storage warehouse, and fire investigation was conducted. After investigating the fire scene and fault tree analysis, the cause of the fire could be attributed to dielectric breakdown of the self-regulating heating cable. This paper could be utilized in the fire safety activities and similar fire investigations.

A Study on the Analysis of Fire Hazards for Communication Cable (통신케이블의 화재위험성 분석에 관한 연구)

  • Hong, Sung-Ho;Park, Chan-Ho;Park, Sang-Tae;Yu, Song-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.192-194
    • /
    • 2009
  • This study presents on the analysis fire hazards of communication cable. In order to analyze fire hazards fire retardant tests and con-calorimeter test is conducted. The fire retardant tests are IEC 60332-1 and UL 94 test. The results show that IEC 60332-1 test and It 9t test are not effective to estimate fire hazard. And various parameter is obtained by con-calorimeter test. It is necessary to analysis effectively fire hazards of cable for new fire retardant test.

  • PDF

Study on the cable fire test for Train (철도차량용 전선의 화재안전기준 조사)

  • Lee, Duck-Hee;Lee, Kwan-Sub;Jung, Woo-Sung;Lee, Cheul-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1119-1124
    • /
    • 2008
  • Defect of the Cable is one of the most frequent cause of fire accident for years. It also take a big part of the fire load for train. In this study, we reviewed the standard code of other countries for cable fire test. Oxygen index, flame propagation test, smoke test and toxicity test codes were investigated. We also suggest the our national code for train cables.

  • PDF

Study on Horizontal and Vertical Temperature Analysis of Cable Fire in Common Duct using Room Corner Experiment (룸코너 실험을 이용한 공동구 케이블 화재 시 수평·수직 방향 온도 분석에 관한 연구)

  • JaeYeop Kim;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.634-643
    • /
    • 2023
  • Purpose: Underground common duct fires are steadily occurring, and the proportion of property damage is particularly large among property and human casualties caused by fires. Especially, cable fires that occur in common areas can spread vertically quickly and pose a great risk. This paper aims to scientifically analyze the nature of the fire by reproducing the fire through experiments. Method: To analyze the characteristics of cable fires in underground common duct, heat release rate and temperature changes were measured through Room-corner (ISO 9705) test, and the vertical and horizontal propagation of cable fires was quantitatively compared and analyzed. Result: The Room Corner Test (ISO 9705) was used to compare the temperature changes at each data logger point. The results showed that the time it took for the fire to reach the ignition temperature in the horizontal and vertical directions from the center point of the first-tier cable was 589 seconds and 536 seconds, respectively, which means that the vertical fire propagation is 53 seconds faster than the horizontal propagation. This proves that the vertical propagation of fire is relatively faster than the horizontal propagation. The horizontal propagation speed of the fire was also compared for each floor cable tray. The results showed that the third-tier cable propagated at 3.4 times the speed of the second-tier cable, and the second-tier cable propagated at 1.5 times the speed of the first-tier cable. This means that the higher the cable is located, the faster the fire spreads and the larger the fire becomes. Conclusion: This study identified the risks of cable fires and analyzed the risks of vertical fire propagation during cable fires based on the results of the Room Corner Test. Studies to prevent the spread of fire and fire response policies to prevent vertical fire propagation are required. The results of this study are expected to be used to assess the fire risk of common areas and other fires.

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

Combustion Characteristics Analysis of a Non-class 1E Cable for Nuclear Power Plants according to Aging Period (경년열화 기간에 따른 원자력발전소용 비안전등급 케이블의 연소특성 분석)

  • Kim, Min Ho;Lee, Seok Hui;Lee, Min Chul;Lee, Sang Kyu;Lee, Ju Eun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.22-29
    • /
    • 2020
  • In this study, combustion and smoke release characteristics of a non-class 1E cable for nuclear power plants were investigated according to aging period. The aging was reproduced through an accelerated aging method for interval of 10 years :10, 20, 30 and 40 year, which was applied the Arrhenius equation. The cable was subjected to accelerated aging. In order to understand combustion and smoke release characteristics, the cone calorimeter test was performed according to the standard code of KS F ISO 5660-1. Heat release rate, mass loss rate, average rate of heat emission and smoke production rate were examined through cone calorimeter test. Fire performance index, fire growth index and smoke factor were derived from test results for the comparison of quantitative fire risk. When comparing the fire performance index and the fire growth index, the early fire risk tends to decrease as aging progresses, which might be attributed from the fact that the volatile substances of cables were evaporated. However, when comparing the heat release rate, average rate of heat emission and mass loss rate, which represent the mid and late periods of the fire risk, the values of accelerated aging cables were much higher than those of non-aged cable, which signifies the unstable formation of the char layer resulted in the change in the performance of flame retardants. In addition, the results from the smoke characteristics show that the accelerated aging cables were lager than the non-aged cables in terms of overall fire risk. These results can be used as baseline data when assessing fire risk of cables and establishing fire safety code for nuclear power plants.

Experiment on the Characteristics of Surface Flame Propagating Velocity of Oil filled Cable in the Underground Utility (지하 전력구내 OF 케이블의 화염전파속도 특성 실험)

  • Lee Jae-Ha;Jeong Jin-Yong;Hong Gi-Bae;Ryou Hong-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.44-49
    • /
    • 2005
  • Real-scale experimental study was performed to characterize the surface flame propagating velocity along the OF cable in the underground utility fire. Temperatures of oil filled OF cable and dried OF cable with the diameter of 90mn were measured using thermocouple and data log system. The hexane and alkyl-benzene oil were used as a fire source using the ignition device. As a result while the surface flame propagating velocity of the three cables was $0.06\~0.09cm/s$, the surface flame propagating velocity of the one cable was $0.028\~0.032cm/s$. Therefore, it was found that the surface propagating flame velocity of the three OF cables is $2.1\~2.8times$ faster than that of one OF cable case. The results show that the surface propagating flame velocity became larger as increase of the number of cable, the volume of alkyl-benzene oil in the cable. The characteristics of surface propagating flame velocity in the OF cable can be helpful to fire suppression system in utility.