• 제목/요약/키워드: Cable Fault

검색결과 273건 처리시간 0.024초

지중송전선 고장점 탐색 장치 설계 (Design of Fault Location System for High Voltage Underground Power Cable)

  • 이재덕;류희석;최상봉;남기영;정성환;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.603-605
    • /
    • 2006
  • To reduce inference of any power delivery failures in underground power cable, power system operators are trying to find effective way of finding fault location as soon as possible. But it is very difficult to find fault location exactly for underground power cable. We are developing fault location system for underground power cable which can detect its fault location exactly. This new system monitors current and voltage of underground power cable by using low voltage and current sensors and if there are any accidents, it records its transient signal. Fault location is calculated by analyzing recorded signal. To develop fault location system for power cable, we needed fault simulation system and we installed it physically and tested. In this rapers, we describe on describe of fault location system for underground power cable.

  • PDF

Feasibility study on the inductive fault current limiting cable

  • Lee, Sang Yoon;Choi, Jongho;Kim, Dong Min;Sim, Kideok;Cho, Jeonwook;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.24-28
    • /
    • 2013
  • Fault current limiting (FCL) cable is a kind of superconducting cable which has a function of limiting the fault current at the fault of power grid. The superconducting cable detours the fault current through its stabilizer to keep the temperature as low as possible. On the other hands, the FCL cable permits the temperature rise within some acceptable limit and the fault current is limited by the consequent increase of the resistance of superconducting cable. This kind of FCL cable is called 'resistive FCL cable' because it uses resistive impedance to limit the fault current. In this paper, we suggest a novel concept of FCL cable, which is named as 'inductive FCL cable'. The inductive FCL cable is similar as the magnetic shielding fault current limiter in its operating mechanism. The magnetic field of superconducting cable is almost perfectly shielded by the induced current at the shielding layer during its normal operation. However, at the fault condition, quench occurs at the shielding layer by the induced current higher than its critical current and the magnetic field is spread out of the shielding layer. It will induce additional inductive impedance to the superconducting cable and the inductive impedance can be increased more by installing some material with high magnetic susceptibility around the superconducting cable. We examined the feasibility of inductive FCL cable with simple elemental experiments. The current limiting performance of inductive FCL cable was estimated considering an arbitrary power grid and its fault condition.

해저광케이블 수리를 위한 효율적인 탐지 및 측정 기법 (Efficient Test Techniques for Submarine Cable Repair)

  • 이영선;정재진;신현식
    • 한국전자통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2008
  • 해저광케이블은 국제통신의 98% 이상을 처리하고 있는 국가의 중요한 정보통신 인프라이다. 하지만 선박의 닻, 어선의 어구, 해저 지진 등 다양한 요인으로 인해 고장이 발생하며, 고장 발생시 대용량 해저통신 트래픽의 영향을 최소화하고, 케이블 수리 선박의 운영비용 절감을 위해서 수리 기간을 최대한 단축해야 한다. 해저광케이블 고장 유형은 Shunt Fault, Cable Cut, Open Fault, Fiber Break 등 여러 유형이 있으며, 고장이 발생하면 육상 터미널 국사(육양국)에서 정확하고 신속하게 고장 유형 및 고장 지점을 파악하고, 케이블 수리 선박은 수리 현장으로 출동하여 수리 작업을 수행하게 된다. 수리작업 기간 중 육양국에서는 케이블 수리 선박에서 요청하는 각종 Test를 수행하게 되며, 이때 육양국 Test 기법은 매우 중요하다. 본 논문에서는 해저광케이블 고장 유형 및 고장 지점 탐지 기법을 제시하고, 해저광케이블 수리기간 단축을 위한 육양국 Test 기법을 고찰하고자 한다.

  • PDF

Investigation on the inductive and resistive fault current limiting HTS power cable

  • Lee, Sangyoon;Choi, Jongho;Kim, Dongmin;Kwon, Yonghyun;Kim, Seokho;Sim, Kideok;Cho, Jeonwook
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.59-63
    • /
    • 2014
  • HTS power cable bypass the fault current through the former to protect superconducting tapes. On the other hand, the fault current limiting (FCL) power cable can be considered to mitigate the fault current using its increased inductance and resistance. Using the increased resistance of the cable is similar to the conventional resistive fault current limiter. In case of HTS power cable, the magnetic field of HTS power cable is mostly shielded by the induced current on the shield layer during normal operation. However, quench occurs at the shield layer and its current is kept below its critical current at the fault condition. Consequently, the magnetic field starts to spread out and it generates additional inductive impedance of the cable. The inductive impedance can be enhanced more by installing materials of high magnetic susceptibility around the HTS power cable. It is a concept of SFCL power cable. In this paper, a sample SFCL power cable is suggested and experimental results are presented to investigate the effect of iron cover on the impedance generation. The tests results are analyzed to verify the generation of the inductive and resistive impedance. The analysis results suggest the possible applications of the SFCL power cable to reduce the fault current in a real grid.

자동 고장 판별 및 거리 측정 기능을 갖는 휴대용 케이블 고장 검출 장치 개발 (Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement)

  • 김재진;전정채
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1774-1779
    • /
    • 2016
  • This paper proposes a portable cable fault detection system with automatic fault distinction and distance measurement using time-frequency correlation and reference signal elimination method and automatic fault classification algorithm in order to have more accurate fault determination and location detection than conventional time domain refelectometry (TDR) system despite increased signal attenuation due to the long distance to cable fault location. The performance of the developed system method was validated via an experiment in the test field constructed for the standardized performance test of power cable fault location equipments. The performance evaluation showed that accuracy of the developed system is less than 1.34%. Also, an error of automatic fault type and location by detection of phase and peak value through elimination of the reference signal and normalization of correlation coefficient and automatic fault classification algorithm not occurred.

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권1호
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

저압 지중케이블 고장 위치 검출 실증 시험장 설계 및 구축 (Design and Construction of Test Field for Low Voltage Under Cable Fault Location Detection)

  • 오훈
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.6666-6672
    • /
    • 2015
  • 전력 케이블의 고장에 대한 위치를 검출하기 위한 다양한 반사파 계측법들이 연구되고 있다. 하지만 대부분 관련 연구들이 시뮬레이션과 실험실에서의 성능 검증이 이루어지고 있고, 실제 현장과 비슷한 조건에서의 연구는 실증 시험장의 부재로 인해 이루어지지 못하고 있다. 따라서 본 논문에서는 케이블 고장 검출 장치의 표준화된 성능 시험과, 장비 운영 교육을 위한 실증 시험장을 설계 및 구축하였다. 구축된 실증시험장에서는 100m, 200m 거리에서 단선, 합선, 반단선, 접촉 불량 고장을 발생시켰고 최대 거리 측정 시험을 위해 1km 케이블을 설치하였다. 이러한 실증시험장은 향후 케이블 고장 검출 기술의 개발과 표준화, 그리고 장비 성능 검증 및 인증 시험 등을 위해 활용될 수 있을 것이다.

고장점 탐색 장치를 위한 신호처리 연구 (Signal Processing Technology for Fault location System in Underground Power Cable)

  • 이재덕;류희석;정동학;최상봉;남기영;정성환;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.712-714
    • /
    • 2005
  • With rapid growth of industry, underground power delivery systems are growing so rapidly and its capacity also growing. So if there are any accident in underground power cable, its inference is too great to count. So power system operators should find Its fault location as soon as possible and replace it But it is difficult to find its fault location for underground power cable. We are developing fault location system for underground power cable which can detect its fault location exactly. This system usually monitor underground power cable on-line But if there are an accident, it record Its transient signal and we can calculate fault location by analyzing it. To develop fault location system for power cable, we needed fault simulation system and we installed it physically and tested at various point. in this thesis, we describe on signal processing technology to detect fault location on power cable and on the result of tested fault location performance.

  • PDF

고장점 탐색 장치를 위한 H/W 설계 (H/W Design for Fault Location System on Underground Power Cable System)

  • 이재덕;류희석;정동학;최상봉;남기영;정성환;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.709-711
    • /
    • 2005
  • Developing fault location system for underground power cable which can detect its fault location exactly require very high speed data acquisition and signal processing capability. We are developing fault location system which is different from conventional fault locator. This fault location system monitor underground power cable by using on-line speed current sensor and if there are an accident, it record its transient signal and calculate fault location by analyzing it. Signals which acquired when power cable fault arise, showed transient characteristics and its frequency band is very hish. So, to develop fault location system, we designed special high speed data acquisition and signal processing board. In this thesis, we describe on data acquisition and signal processing H/W design for fault location system on underground power cable.

  • PDF

사고전류 제한형 고온 초전도케이블의 한류부 특성평가 (Evaluation on the Properties of the Current Limiting Part for Fault-Current-Limiting Type HTS Cables)

  • 김태민;홍공현;한병성;두호익
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.191-195
    • /
    • 2015
  • Inside the existing superconducting cables, the superconducting wire carries a loss-free current, and the cable former (the stranded copper wire) bypasses the fault current to prevent damage and loss of the superconducting cable when the fault current is applied. The fault-current-limiting-type superconducting cable proposed in this paper usually carries a steady current; but in a fault state, the cable generates self-resistance that makes the fault current lower than a certain width. That is, the superconducting cable that transmitted only a low voltage and a large capacity power repetitively limits the fault current, as does a superconducting current limiter. To complete this structure, it is essential to investigate the mutual resistance relationship between the superconducting wires after applying a fault current. Therefore, in this paper, one kinds of superconducting wires (a wire without a stabilization layer) were connected parallel 4 tapes, respectively; and after applying a fault current, the current, voltage, resistance and thermal stability of the HTS thin-film wires were examined.