• Title/Summary/Keyword: Cable Aging

Search Result 126, Processing Time 0.023 seconds

Evaluation of Nuclear Plant Cable Aging Through Condition Monitoring

  • Kim, Jong-Seog;Lee, Dong-Ju
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.475-484
    • /
    • 2004
  • Extending the lifetime of a nuclear power plant [(hereafter referred to simply as NPP)] is one of the most important concerns in the global nuclear industry. Cables are one of the long-life items that have not been considered for replacement during the design life of a NPP. To extend the cable life beyond the design life, it is first necessary to prove that the design life is too conservative compared with actual aging. Condition monitoring is useful means of evaluating the aging condition of cable. In order to simulate natural aging in a nuclear power plant. a study on accelerated aging must first be conducted. In this paper, evaluations of mechanical aging degradation for a neoprene cable jacket were performed after accelerated aging under tcontinuous and intermittent heating conditions. Contrary to general expectations, intermittent heating to the neoprene cable jacket showed low aging degradation, 50% break-elongation, and 60% indenter modulus, compared with continuous heating. With a plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of the cable jacket of neoprene can be extended much longer than extimated through the general EQ test. which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach that considers the actual environment conditions of the nuclear power plant is required for determining cable life.

AC Breakdown Characteristics for 22.9kV CV Power Cable Before and After Cyclic Aging for 14days (22.9kV CV 전력케이블의 14주기 고온 열화에 대한 교류파괴특성)

  • 윤대혁;김위영;박민호;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.601-604
    • /
    • 2001
  • 22.9 kV CV power cable is very important factor of underground distribution power line. Cyclic aging for 14days is performed to remove a large amount of the volatiles found in freshly manufactured cable. In this paper, we examined AC breakdown characteristics of CV power cable before and after cyclic aging for 14days. As the result, even if there were some exceptions, the AC breakdown voltage before aging was lower than that after aging, but most of the results were that the AC breakdown voltage after aging was lower than that before aging.

  • PDF

APPLICATION OF DIRECT LEAKAGE CURRENT METHOD FOR AGING DIAGNOSIS EVALUATION (열화 진단 평가를 위한 직류 누설법의 활용)

  • Lee, Kwan-Woo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.149-152
    • /
    • 2001
  • In this paper, aging diagnosis method of CV cable was investigated. CV cable was designed for the sake of using during 30 years. Therefore it was important to evaluate the cable's remaining life because CV cable used for power transmission line since 1970's. CV cable was mainly installed at the underground owing to the environmental condition. If the cable accident occurred, it needs the much time for the accident recovery and the much damage at the industrial activity. therefore, this paper should study the direct leakage current method, a sort of the cables' aging test method

  • PDF

APPLICATION OF DIRECT LEAKAGE CURRENT METHOD FOR AGING DIAGNOSIS EVALUAT10N (열화 진단 평가를 위한 직류 누설법의 활용)

  • 이관우;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.149-152
    • /
    • 2001
  • In this paper, aging diagnosis method of CV cable was investigated. CV cable was designed for the sake of using during 30 years. Therefore it was important to evaluate the cable's remaining life because CV cable used for power transmission line since 1970's. CV cable was mainly installed at the underground owing to the environmental condition. If the cable accident occurred, it needs the much time for the accident recovery and the much damage at the industrial activity. therefore, this paper should study the direct leakage current method, a sort of the cables'aging test method.

  • PDF

Lightning Impulse Characteristics for 22.9kV Power Cable Before and After Cyclic Aging for 14days (14주기 열화에 따른 22.9kV 전력케이블의 Lightning-Impulse 특성분석)

  • Kim, We-Young;Heo, Jong-Cheol;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2274-2276
    • /
    • 2005
  • Cyclic aging for 14days is performed to remove the large amount of the volatiles found in freshly manufactured cable. In this paper, we examined lightning impulse characteristics of power cable before and after cyclic aging for 14days. As the result, the breakdown voltage after aging was lower than that before aging, but the breakdown voltage after aging was higher than that before aging in TR CNCV-W $60mm^2$ power cable.

  • PDF

Normalization Diagnosis of Aging Process on Partial Discharge Signals of CV Cable (CV케이블의 부분방전 신호를 통한 열화과정의 정량적 진단)

  • 소순열;임장섭;김진사;이준웅;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.451-455
    • /
    • 1997
  • The partial discharge has been blown as the chief breakdown of power equipments. The analysis and the recognition is much difficult because the partial discharge signal is very small and has complex aging pattern. Recently, insulation aging diagnosis based on pattern of phase(Ф), partial discharge magnitude(q), number(n) has been very important. Owing to depreciate the reappearance of aging progress at the electrical tree pattern and to be difficult to analyze visually, the study on partial discharge pattern is suggested to normalizing analysis method of partial discharge signals. This parer is purposed on prediction of life-time measurement of cv-cable, on decision of risk degree with normalization and real-time measurement of partial discharge signals for aging diagnosis of cv-cable. As normalizing the aging signals of electrical tree in cv-cable, it is able to confirm risk degree of insulation material with the distribution of Ф-q-n and recognize the process of aging pattern using neural network.

  • PDF

Insulation Aging Diagnostics of Submarine Medium Voltage Power Cables (배전급 해저케이블의 절연열화진단)

  • Mo, Jong-Myung;Yi, Dong-Young;Song, Kwang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.149-152
    • /
    • 2001
  • In this work, we have conducted insulation aging assessment and maintenance for submarine medium voltage power cable systems to discriminate and maintain bad cables economically. We have found that aging status of submarine cable systems are very poor and in progress. We have found that insulation status were improved with the replacement of cable terminations. We have confirmed with the electrical and structural analysis of terminations, that the poor aging status of cables are mainly caused not by the cable insulations but by the aging of cable terminations. From the above results, we have also confirmed that the domestic diagnostic system is successful and convenient for the discrimination and maintenance of the damaged cables economically.

  • PDF

The Analysis of Weibull Distribution after an Accelerated Aging Test of MV Cable (배전케이블의 수트리 가속열화 후 와이블분포 해석)

  • Kim, Jin-Gook;Lim, Jang-Seob;Song, Il-Gun;Kim, Ju-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.7-11
    • /
    • 2003
  • for many years already, testing laboratories, research institutes and manufactures try to find a reliable water tree accelerated ageing test that is able to show whether a polymer Medium Voltage cable os susceptible to water treeing or not. Test on laboratory samples, model cable designs, and fell size cable are presented. Apart form aging, another important aspect of any accelerated aging test is the right choice of th preconditioning method. THTS paper is the analysis of weibull distribution method after an accelerated aging test of MV(Medium Cable) cable.

  • PDF

A Study on the Remain Life with Aging in 22kV CV cable (22kV 전력케이블의 열화 판정에 관한 연구)

  • Lee, Kwan-Woo;Mok, Young-Soo;Kim, Bo-Kyeong;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.19-21
    • /
    • 2003
  • In this paper, we studied on life-decision of underground cable of live-lines state. As all equipments have been wear, underground cables decided design-life on the whole 30 years because underground cable have been occurred aging as time goes. CV cable has been become about 30 years after installation in the South Korea, is come to a important point of time with estimation about life. Study target cable is 22 kV CV cables in this point of view and installation cable is about 10 years before and behind. Measurement method used dc leakage method of live-lines state that applied voltage of 50V in neutral point and data is analyzing result that is measured during 5 years. In this result, insulation resistance could confirm that change according to season and cause is effect of humidity, seasons and load current. Also, according as data is gone aging, insulation resistance by Weibull distribution could confirm functionally its decrease. As a result, the aging speed of cable that water tree is gone could confirm fastness very. Numerical analysis result, cable that water tree is not gone could confirm that life of cable that has passed 10 years remains about $10{\sim}20$ years.

  • PDF

A Study on the Remain Life with Aging in 22kV CV Cable (특고압 케이블(6.6/22kV) 케이블의 활선열화 수명 판정 방법에 관한 연구)

  • Lee, Kwan-Woo;Mok, Young-Soo;Kim, Bo-Kyeong;Lee, Jong-Bok;Park, Dae-Hee;Park, Bok-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1759-1761
    • /
    • 2004
  • In this paper, we studied on life-decision of underground cable of live-line state. Data of CV 6.6kV and 22kV cable's life is got data measured insulation resistance by D.C. overlapped current. We confirmed that D.C resistance reduced by time. Aging of cable could be occurred by electrical, thermal, mechanical stress and complex aging confirmed that proceeded by Weibull plot. In the result, life of 6.6kV cable remained 21 years till light caution and 35 years till heavy caution, so aging of 6.6kV XLPE cable was not occurred. Life of 22kV cable remained 10 years till light caution and 22 years till heavy caution. We confirmed that the designed life of 22kV cable is similar to the measured life.

  • PDF