• 제목/요약/키워드: Cabin noise

검색결과 149건 처리시간 0.024초

함정 격실에 적용되는 흡음재와 잔향시간에 따른 실내 소음 분석 (Investigation of the Indoor Noise of Naval Vessel with Regarding to the Sound Absorption and Reverberation Time in a Cabin)

  • 한형석;박미유;조흥기;김중길;임동빈;손윤준
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.960-967
    • /
    • 2010
  • The sound field can be classified to the direct, diffract and reverberant sound field. If the sound absorption material in a room is not applied sufficiently, the reverberant sound field increases and the sound pressure in a room also increases when the sound source exists in a room. Therefore, the reverberation time should be controled in order to reduce the reverberant sound as well as sound pressure level in a room. Even though the reverberation time is specified and researched widely in architectural engineering, it is rarely performed in a marine engineering. Therefore, in this research, the reverberation time in a navel vessel is researched related to the noise reduction in a cabin.

레저보트${\cdot}$요트의 인테리어재료 특징에 관한 연구 (A Study on Characteristics of Interior design materials in Leisure Boats & Yachts)

  • 변량선
    • 한국실내디자인학회논문집
    • /
    • 제15권1호
    • /
    • pp.158-165
    • /
    • 2006
  • The space of leisure boats & yachts is formed by interior design elements and shapes are formed by combination of those elements. By means of configuration of the design elements, space is made in a ship and patterns in an inside space are made through production. These space can be categorized as (1) cabin(common cabin, staterooms, one-cabin), (2) salon, (3) galleys & dinette, (4) heads(showers, toilets, bidets, sinks), (5) cockpit, (6) wheelhouses, navigation stations, (7) fore peaks, (8) engine room, (9) deck etc. Interior materials are classified into (1) walls(bulkheads & lining wall), (2) floors(sole), (3) ceilings(overheads), (4) doors & windows, (5) furniture, (6) lightings and (7) Hardware & decoration in large, medium and small sizes, which constitute interior design elements of a leisure boat & yacht. The materials used in leisure boats & yachts have properties of lightweight, noise and vibration resistance, fire & flame retardant, stability, strengths, lifespan, appearance and special operation in construction.

한국형 기내 의학적 상황 대처 방안 안내서 (Korean Guideline for Managing In-flight Medical Events)

  • 김정언;박나리;김정하;권영환
    • 항공우주의학회지
    • /
    • 제30권1호
    • /
    • pp.3-17
    • /
    • 2020
  • The cabin environment has many physiological effects on commercial aircraft passengers and medical providers, and environmental stress factors exist. Therefore, it is important for medical providers to understand the effects of aviation physiology and cabin environment on the human body. It should also be remembered that these physiological changes and environmental stress factors can affect passengers as well as flight crew and also medical equipment. Providing medical assistance during a flight offers a number of unique challenges including lower cabin pressure, tight quarters, crowded conditions, and loud background noise. The purpose of this Korean guideline is to offer an overview on various in-flight emergencies that could be anticipated and to outline treatment priorities.

전달 경로 분석과 패널 기여도 분석을 이용한 휠로더의 실내소음 저감에 관한 연구 (Interior Noise Reduction of Wheel Loader Using Transfer Path Analysis and Panel Contribution Analysis)

  • 김보용;신창우;정원태;박성용;장한기;김성재;강연준
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.805-815
    • /
    • 2008
  • Transfer path analysis(TPA) and panel contribution analysis(PCA) have been used widely to reduce interior noise of mechanical systems. TPA enables us to decompose interior noise into air-borne and structure-borne noises and estimate the path contribution of noise sources. PCA is also used to identify the noise contribution of each sub-panel in vibro-acoustic systems. In this paper, TPA and PCA are applied to wheel loader, one of the heavy construction equipments. Firstly, TPA for air-borne noise is conducted to estimate the contribution of air-borne sources using pressure transfer function. Thereafter, TPA for structure -borne noise is employed to verify the results of air-borne source quantification through the synthesis of two results. Secondly, PCA is performed by both TPA using pressure transfer function between panels inside the cabin and boundry element method(BEM) for the cabin of wheel loader with various boundary conditions. As a results, it was found that TPA conducted by experiments and PCA accomplished by both experiments and BEM are very effective methods in analyzing the path and contribution of the noises for reducing an interior noise level in the wheel loader system.

굴삭기 운전실 소음저감에 관한 연구 (A Study on the Noise Reduction of Cabin in the Excavator)

  • 김추호;최두원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.89-93
    • /
    • 1995
  • 일반적으로 건설장비의 운전자 소음은 자동차와는 달리 주행 시 소음에 관한 것은 크게 문제되지 않는다. 다만 모든 작동부들이 유압력에 의해 구동되므로 유압 이음이 새롭게 대두되며, 엔진 사용조건 또한 자동차와는 상이하다. 그러나, 운전자가 느끼는 관점에서 운전실내에서 안락함의 요구는 점차로 강해지고 있을 뿐만 아니라 소비자들의 직접적인 구매 의욕과 직결된다. 이에 본 연구에서는 굴삭기 운전실에서 문제시 되는 부밍(Booming)소음에 대해 고찰하고, 구조 기인 소음(structure-borne noise)에 초점을 둔 실험적 기법의 도입으로 주 소음원을 규명하고 주요 인자들에 대한 기여도 분석을 통해 운전실 소음 저감을 구현하였다.

  • PDF

상용속도 200km/h의 한진고속열차 객실 내 소음 예측 (CABIN INSIDE NOISE LEVEL ESTIMATE OF HANJIN HIGH SPEED TRAIN WITH RUNNING 200km/h)

  • 이용주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.67-72
    • /
    • 1996
  • 한진 중공업은 상용 운행 속도 200km/h로 중국 광주-형양간 운행을 목적으로 하는 고속열차를 개발하여 제작을 완료하였다. 중국 철도부 측에서는 한진 고속 열차의 객실 내 소음 수준이 운행 최고 속도에서 65 dBA이하이도록 요구하였으며, 당 연구소에서는 외부 소음원을 가정하여 다양한 실험 및 해석을 통하여 객실 내 소음 수준을 예측하여 이를 설계에 반영토록 하였다.

  • PDF

벡터 해석법에 의한 차실 소음의 저감 (Refinement of Car Interior Noise Using the Vectorial Analysis Technique)

  • 이정권;민형선;백홍전
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.141-147
    • /
    • 1991
  • A vectorial approach is used to reduce the objectionable booming noise in the vehicle interior cabin. After identifying the structural transmisson paths, the structural-acoustic transfer functions are evaluated at those mounting positions. Using the measured deformations in the mounting elements and multiplying them with each dynamic stiffness value one can easily get the dynamic input forces acting on the mounting elements. By summing all the contributors vectorially, most important contributor or transmission path can be determined. According to the experimental information, devised countermeasures are applied to a development car and good results are obtained.

  • PDF

진동-음향 연성계의 구조-유체 상호작용 (Structure-Fluid Interaction in a Coupled Vibroacoustic System)

  • 최성훈;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.135-141
    • /
    • 1996
  • Numerical analysis techniques have been applied to obtain the vibroacoustic characteristics of the simplified model of a passenger-car cabin. Two kinds of coupled vibration-acoustic analysis, such as one-way coupling and full coupling, have been carried out via the interface between the results of vibration analysis by FEM and acoustic analysis by BEM. The comparison of two coupled analysis results show the fluid-structure interaction in terms of the coupled effect of the vibration and noise.

  • PDF

FPSO Topside의 소음특성 파악 및 저감대책 (A Noise Characteristics and Countermeasures of FPSO Topside)

  • 김동해;김성훈;정건화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.73-76
    • /
    • 2005
  • Recently, the demand for the Floating, Production, Storage, and Offloading facility (FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. FPSO vessel dose not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise sources such as gas turbines, compressors, and pumps, are located on top of the hull (Topside area). In general, the noise regulation for the offshore structure is severer than that of the cargo ship and acceptable noise limit of cabin is specified as 45 dB(A). This paper describes the noise characteristics and the countermeasures for FPSO Topside area through investigation of noise analysis and site measurement results. Proper countermeasures, considering the characteristics of sources and receiver spaces, were applied from the noise prediction and various measurement results. Finally, this ship was successfully delivered with excellent noise properties.

  • PDF

디젤 엔진 지게차의 소음원별 기여도 분석과 실내소음 저감 (Noise Contribution Analysis and Noise reduction of a Diesel Engine Fork-lift Truck)

  • 이종규;조영호;김경환;박석태;김낙인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1473-1478
    • /
    • 2000
  • Severe fork-lift truck noise is annoying to an operator as well as one of the noise pollution elements. This paper presents the noise contribution analysis of a cabin type fork-lift truck to identify the major sources and its usage to reduce the interior noise level. The methodologies for this work are sound field analysis, sound intensity test, insertion loss test of duct system and etc. An effective method to suppress interior noise level of fork-lift truck and design guides are suggested.

  • PDF