• Title/Summary/Keyword: Cabbage waste

Search Result 60, Processing Time 0.038 seconds

Potential Usage of Food Waste as a Natural Fertilizer after Digestion by Hermetia illucens (Diptera: Stratiomyidae)

  • Choi, Young-Cheol;Choi, Ji-Young;Kim, Jong-Gill;Kim, Myung-Sook;Kim, Won-Tae;Park, Kwan-Ho;Bae, Sung-Woo;Jeong, Gil-Sang
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.171-174
    • /
    • 2009
  • The black soldier fly larvae are able to decompose various organic wastes such as livestock manures and food wastes. We tested whether the quality of the insect derived compost, i.e. larval feces, was comparable to that of a commercial fertilizer. The results show that the chemical composition and the growth rate of cabbages grown on the insect derived compost are virtually identical to those on the commercial fertilizer. Therefore the insect derived compost will be an ideal substitute to commercial fertilizers.

A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases

  • Lin, Yu-Chen;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.

The continuous application effect of the food waste composts on the cultivated upland soils and plants (밭에서 음식물류폐기물 활용 퇴비의 연용이 토양 및 작물에 미치는 영향)

  • Kwon, Soon-Ik;So, Kyu-Ho;Hong, Seung-Gil;Kim, Gun-Yeob;Seong, Ki-Seog;Park, Woo-Kyun;Kim, Kwon-Rae;Lee, Deog-Bae;Jung, Kwang-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.71-81
    • /
    • 2009
  • Food waste has been actively used as a composting material in order to reduce the environmental pollution load and to enhance the recycling of resources. In this study, the longterm effects of continuous application of food waste compost to soils on both the crop production and the soil properties were examined to ensure the safety of food waste compost in agricultural use. In addition, we collected the preliminary data for establishing standard application rate of food waste compost for agricultural utilization. Based on conventional nitrogen application rate of chemical fertilizer for crop cultivation, pig manure compost $(24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1})$ and food waste compost ($20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$) were applied to the upland soil in $2{\times}2{\times}2m$ lysimeter in which lettuce (Lactuca sativa var. crispa), Chinese cabbage (Brassica campestris subsp. napus var. pekinensis), red pepper (Capsicum annuum), and potato (Solanum tuberosum) were grown continuously. The crops grown in soils to which food waste compost applied showed better growth responses than the control, whereas some variations were observed in the crops grown in chemical fertilizer treated soils. Continuous application of food waste compost increased the contents of organic matter, nitrogen, and phosphorus, which resulted in improving soil aeration.

  • PDF

Evaluation of the Effect of Different Application Ratios of Lime-treated Fertilizer Mixed with Food Waste on Chinese Cabbage (Brassica rapa L.) Yield and Soil Chemical Properties (음식물류폐기물 혼합 석회처리비료 사용량에 따른 배추(Brassica rapa L.) 수량 및 토양 화학성 평가)

  • Young-Jae Jeong;Sang-Geum Lee;Seong-Heon Kim;Sang-Ho Jeon;Youn-Hae Lee;Soon-Ik Kwon;Jae-Hong Shim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.81-89
    • /
    • 2023
  • Lime-treated fertilizer (LTF) is manufactured using the lime stabilization method with food waste. LTF is effective in neutralizing acidic soil, improving nutrient and organic matter content in soil, and increasing crop productivity. However, excessive use of LTF in agricultural land can have undesirable effects, such as reduced crop growth and nutrient accumulation in soil. This study was evaluated the effect of different application ratios of LTF on the crop yield index (%), nutrient (N, P2O5, K2O) uptake index (%), and soil chemical properties. The following treatments were applied: untreated (UT), NPK (NPK), NPK+calcium hydroxide (CH), and NPK+1-, 2-, 4-, and 8-times of LTF (LTF1, 2, 4, and 8). The yield index for LTF1 was the highest among different LTF treatments. Moreover the yield index for spring and winter cabbage in LTF1 treatment was 10% and 21% higher, respectively, than that in NPK treatment. The yield and nutrient indices were decreased with the increase in LTF application ratio. The soil pH and EC tended to increase with the increase in LTF ratio, and were the highest at 8.2 and 2.1, respectively, after cultivation for LTF8 (P<0.05). With the increase in soil pH, the soil inorganic nitrogen (NH4-N, NH3-N) and available phosphate (Av. P2O5) levels were decreased (P<0.05). Our results suggest that LTF1 (643 kg 10a-1) is an appropriate ratio for improving soil chemical properties and increasing crop yield.

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

Assessment of Aerobic Stabilized Waste Sludge as Liquid Fertilizer and Its Safety (슬러지 액비의 비효효과 및 안전성 평가)

  • Lee, Young-Ok;Hwang, Jin-Gyu;Hwang, Eung-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.314-322
    • /
    • 2008
  • This study was carried out to assess aerobic stabilized waste sludge as liquid fertilizer for the growth of cucumber, cabbage and chrysanthemum. Sludge was pretreated with NaOH(40 meq/L) at 40$^{\circ}C$ for 330 min. The number of fecal coliforms in batch test sludge fertilizer was more efficiently reduced than those in continuous one, maybe due to longer SRT. All produced fertilizer belonged to class B according to US EPA requirement at least. Among 6 heavy metals regulated in Korea, As, Cd and Hg were not detectable in plant amended with fertilizer whereas the concentration of Cr, Cu and Pb in plant was less than 10 mg/kg dw. However, Zn and Ni, which were restricted in other country, but not in Korea, were detected in most amount of 118 mg/kg and 15.7 mg/kg, respectively. Furthermore, based on dry weight of plant, digested sludge(5.4 mg, dw) functioned as better fertilizer rather than activated sludge (4.3 mg, dw), much more fertile when those sludge was pretreated(1.24 mg, dw) compared to untreated one(1.12 mg, dw). But its fertility was 60$\sim$80% of commercial fertilizer and accumulation of Zn, Ti and Cr in plant was founded. Therefore, it could be concluded that sludge-fertilizer can be used for flower unlimitedly, but for edible plant limitedly as additive fertilizer.

Use of Plant Materials for Decontamination of Waste Water Polluted with 2,4-Dichlorophenol (2,4-Dichlorophenol로 오염된 폐수의 정화를 위한 식물체의 이용)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.292-297
    • /
    • 1999
  • This study was performed to estimate the possibility of use of plant materials as catalytic agents fur the decontamination of waste waters contaminated with organic pollutants by using 2,4-dichlorophenol(2,4-DCP) as a model pollutant. Plant materials containing high peroxidase activity were selected as catalysts for the removal of 2,4-DCP. Peroxidase activity, which plant materials were containing, was measured, and the greatest peroxidase activity was observed in shepherd's purse, followed by turnip, sweet potato, Chinese cabbage and white radish. The peroxidase activity in shepherd's purse was four times higher than that of horseradish purchased in U.S.A. Using shepherd' s purse and turnip, it was investigated the effect of various factors on the decontamination of 2,4-DCP through oxidative coupling. The removal of 2,4-DCP was extremely fast, and a maximal removal could be achieved within 3 min for shepherd' s purse and 15min for turnip. The pH range was from 3.0 to 8.0 and the amount of $H_2O_2$ added was 9mM when maximal removal was achieved(over 90%). No increasing removal of 2,4-DCP was observed due to increasing the amount of $H_2O_2$ added (over 9mM). The initial concentration affected the transformation of 2,4-DCP incubated with plant materials. When turnip was used as catalytic agent, it was observed decreasing transformation of 2,4-DCP due to increasing initial concentration.

  • PDF

The Study of Solid Waste Compost Development for Reclaiming Damage Soil in Forest (산림훼손토양 복원을 위한 부숙토 개발 연구)

  • Na, Seung-Ju;Chang, Ki-Woon;Yang, Hui-Young;Jeon, Han-Ki;Lee, Jong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • To study the development of solid waste compost to use sewage sludge and paper mill sludge for reclaiming damage soil in forest, the changes of temperature, moisture, chemical properties, heavy metals and harmful compound during the aerobic decomposition were investigated, and the compost decomposition of final products investigated the round paper chromatography method and G.I(Germination index) value. The results were summarized as follows. Temperature was changed a little during early 5days because of air temperature too low. That was rapidly increased to over $50^{\circ}C$ at 4days after first turning and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 15days after aerobic decomposition in A and C treatments. The second turning was conducted at 18 days after aerobic decomposition, and then the temperature was little changed. At the compare first with terminal product, The moisture content was decreased all treatments but the change was little in A and B treatments. pH was decreased to below 1 in all treatments. EC was increased to below 5dS/m. The content of total carbon, C/N ratio, $NH_4{^+}-N$ were decreased with 4~7%, below 8 and below 500mg/kg in all treatments, respectively. The content of total nitrogen, $NO_3{^-}-N$, CEC were increased with below 0.5%, below 173mg/kg and over $30cmol^+/kg$ in all treatments, respectively. The content of heavy metals and harmful compound were similar during aerobic decomposition and suited to standard of 가 grade in all treatments. The result of round paper chromatography method and G.I. value, The C treatment concluded well aerobic decomposition. Especially, the G.I. value in C treatment was 64.1 and 66.2 at cabbage and grass, respectively.

  • PDF

The Applicability of the Acid Mine Drainage Sludge in the Heavy Metal Stabilization in Soils (산성광산배수슬러지의 토양 중금속 안정화 적용 가능성)

  • Kim, Min-Suk;Min, Hyungi;Lee, Byeongjoo;Chang, Sein;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong-Sik;Bak, Gwan-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.78-85
    • /
    • 2014
  • BACKGROUND: Recent studies using various industrial wastes for heavy metal stabilization in soil were conducted in order to find out new alternative amendments. The acid mine drainage sludge(AMDS) contains lots of metal oxides(hydroxides) that may be useful for heavy metal stabilization not only waste water treatment but also soil remediation. The aim of this study was to investigate the applicability of acid mine drainage sludge for heavy metals stabilization in soils METHODS AND RESULTS: Alkali soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine sites nearby. Three different amounts(1%, 3%, 5%) of AMDS were applied into control soil and contaminated soil. For determining the changes in the extractable heavy metals, $CaCl_2$ and Mehlich-3 were applied as chemical assessments for metal stabilization. For biological assessments, lettuce(Lactuca sativa L.) and chinese cabbage(Brassica rapa var. glabra) were cultivated and accumulation of heavy metals on each plant were determined. It was revealed that AMDS reduced heavy metal mobility and bioavailability in soil, which resulted in the decreases in the accumulation of As, Cd, Cu, Pb, and Zn in each plant. CONCLUSION: Though the high level of heavy metal concentrations in AMDS, any considerable increase in the heavy metal availability was not observed with control and contaminated soil. In conclusion, these results indicated that AMDS could be applied to heavy metal contaminated soil as an alternative amendments for reducing heavy metal mobility and bioavailability.

Dietitians′ Perception on Usage of Cook/chill Vegetables in Institution Foodservice (단체급식 소에서의 냉장조리 채소의 이용에 대한 영양사의 인식조사)

  • 류은순;이동선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1293-1300
    • /
    • 2001
  • We surveyed dietitians'perception on usage of cook/chill vegetables, The questionnaires were distributed to 245 dietitians working in elementary schools and other institutions in Busan area. According to the survey, 75.9% of the dietitians perceived that minimally processed ready -to-use vegetal)toes would be helpful for the institutional foodservice They answered that problems of vegetable usage in the foodservice mainly come from long preparation time (45.4%), a large quantity of leftover (13.1%), and a high ratio of disuse (16.0%). Degree of preparedness from raw vegetables was highest for garlic, and was in tile order of platicodcm, onions, carrots, Potatoes, Korean cabbage and radish.40.9% of the dietitians answered that it was necessary Ic develop cook/chill vegetables in their institute restaurants. The high career group ( >6 yrs.) was, however, significantly (p<0.05) negative against the use of cooHchill vegetables. The dietitians were expecting that developing cook/chill vegetables would save cooking time and processes (4.43/5.00), and reduce waste (4.53/5.00) greatly. They also estimated that focal hygiene and quality would be improved, and labor cast be reduced moderately. On the other hand, they thought that the cost of flood would not be reduced.

  • PDF