• Title/Summary/Keyword: CaO content

Search Result 918, Processing Time 0.033 seconds

The effect of Ca additions on the ignition and combustion behaviors of Mg alloys (Mg 합금의 발화 및 연소특성에 미치는 Ca 첨가의 영향)

  • Chung, D.S.;Cho, H.;Kim, J.K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.324-327
    • /
    • 2009
  • In the present study, the effect of Ca additions on the ignition and combustion behaviors of Mg alloys has been investigated. Cracks and inclusions were observed at the free surface and interior in as-cast pure magnesium but not in Ca-bearing Mg alloys. There was a tendency that ignition temperature rapidly increased with increasing Ca content in Mg-Ca alloy. Saturated composition for increasing of ignition temperature was related with solid solubility of Ca in Ca-bearing Mg alloys. The protective oxide layers, MgO, could also be found on the combustion surface of Ca-bearing magnesium alloy.

Electrical properties and microstructure of microwave dielectric ceramics (Ca0.7Sr0.3)m(TiyZr1-y)O3 (고주파 유전체 세라믹 (Ca0.7Sr0.3)m(TiyZr1-y)O3의 전기적 특성 및 미세구조)

  • Chun, Myoung-Pyo;Park, Myoung-Sung;Kang, Kyung-Min;Nam, Joong-Hee;Cho, Jeong-Ho;Kim, Byung-Ik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.21-24
    • /
    • 2010
  • The effects of mole ratio(A/B) m and Ti-ion on the dielectric properties and microstructure of the microwave dielectric ceramics $(Ca_{0.7}Sr_{0.3})_m(Ti_yZr_{1-y})O_3$ were investigated. Ti ions substituted on Zr-sites in these modified $CaZrO_3$ composition strongly affect the sintering density and microstructure of the fired ceramic body. With increasing the amount of Ti substituted on Zr-sites, the sintered density rapidly increased and the dense microstructure was obtained for the compositions having mole ratio of 1.01, whereas the sintered density and microstructure are nearly constant with the content of Ti-ion for the compositions having mole ratio of 0.99. With increasing the content of Ti ion, the curve of TCC (Temperature Coefficient of Capacitance) as a function of temperature rotated clockwise and satisfied the COG characteristics for both of compositions with mole ratio of 0.99 and 1.01. The content of Ti ion seems to be more effective than mole with respect to the controlling of firing and TCC.

A Study on the Technique to Manufacture Recycled Cement from Cementitious Powders for Complete Recycling of Concrete Structures (콘크리트 구조물의 완전순환이용을 위한 폐콘크리트계 미분말의 재생시멘트 활용 기술 연구)

  • Park, Cha-Won;An, Jae-Cheol;Gang, Byeong-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • The purpose of this study is development of technique to use cementitious powder as recycle cement produced from deteriorated Concrete waste which has a large quantity of calcium carbonate. Therefore, after having theoretical consideration based on the properties of high-heated concrete and concerning about neutralization of Concrete, we analysis chemical properties of ingredients of cementitious powder. After making origin cement paste, then processing the accelarated carbonation, we consider the properties of hydration and chemical properties of cementitious powder under various temperature conditions. As a result of the thermal analysis, the $CaCO_3$ content of cementitious powder would affect decision of heat temperature to recover its hydrated ability because $CaCO_3$ content is increased when neutralization is progressed. And as a result of XRD analysis, in case of origin powder of non-neutralized paste, CaO peak is found at $700^{\circ}C$. but, heat temperature to generate CaO would increase when the content of neutralized ingredients is increased. Finally, recycle cement heated at $700^{\circ}C$ 120min. shows the best compressive strength when the content of neutralized ingredients in recycle cement is less then 50%.

The Properties of Recycle Cement to Reuse Cementitious Powder from Neutralized Concrete Waste (중성화가 진행된 폐콘크리트계 미분말을 재활용한 재생시멘트의 물성)

  • Kang, Tae-Hun;Kim, Sung-Su;Jung, Min-Soo;Kang, Byung-He
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is development of technique to use cementitious powder as recycle cement produced from deteriorated Concrete waste which has a large quantity of calcium carbonate. Therefore, after having theoretical consideration based on the properties of high-heated concrete and concerning about neutralization of Concrete, we analysis chemical properties of ingredients of cementitious powder. After making origin cement paste, then processing the accelarated carbonation, we consider the properties of hydration and chemical properties of cementitious powder under various temperature conditions. As a result of the thermal analysis, the CaCo3 content of cementitious powder would affect decision of heat temperature to recover its hydrated ability because CaCo3 content is increased when neutralization is progressed. And as a result of XRD analysis, in case of origin powder of non-neutralized paste, CaO peak is found at 700℃. but, heat temperature to generate CaO would increase when the content of neutralized ingredients is increased. Finally, recycle cement heated at 700℃ shows the best compressive strength when the content of neutralized ingredients in recycle cement is less then 50%. However, it would be quite difficult to manage quality of recycle cement according to recycling points of various concrete waste.

  • PDF

Microstructure and dielectric properties with a contents Ca of (Sr.Ca)$TiO_3$-based grain boundary layer ceramics ((Sr.Ca)$TiO_3$계 입계층 세라믹의 Ca변화량에 따른 미세구조 및 유전특성)

  • 최운식;김충혁;이준웅
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.534-542
    • /
    • 1994
  • Microstructures and dielectric properties of (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$+0.006Nb$_{2}$O$_{5}$ (0.05.leq.x.leq.0.2) ceramic were investigated. The specimens fired in a reducing atmosphere(N$_{2}$) were painted on the surface with CuO paste, and then annealed at 1100.deg. C for 2 hr. SEM and EDAX revealed that CuO penetrated rapidly into the bulk along the grain boundaries during the annealing. Grain size increased with increasing Ca content up to 15[mol%], but decreased with further addition. In the specimens with 10-15[mol%l of Ca, excellent dielectric properties were obtained as follows; dielectric constant <25000, dielectric loss(tan .delta[%]) <0.3[%] and capacitance change rate with temperature <.+-.[%], respectively. All the specimens in this study exhibited dielectric relaxation with frequency as a function of the temperature. The dispersive frequency was over 10$^{6}$ [Hz].z].

  • PDF

Comparison of plasma resistance between spray coating films and bulk of CaO-Al2O3-SiO2 glasses under CF4/O2/Ar plasma etching (CaO-Al2O3-SiO2 계 벌크 유리와 스프레이 코팅막의 CF4/O2/Ar 플라즈마 식각 시 내식성 비교)

  • Na, Hyein;Park, Jewon;Park, Jae-Hyuk;Kim, Dae-Gun;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.66-72
    • /
    • 2020
  • The difference of plasma resistance between the CAS glass bulk and coating films were compared. Plasma resistance was confirmed by analyzing the etch rate and the microstructure of the surface when the CAS glass bulk and the glass coating film were etched with CF4/O2/Ar plasma gas. CAS glass coating film was etched up to 25 times faster than the glass bulk. A statistically high correlation between the surface roughness and the etching rate of the coating film was derived, and thus, the high surface roughness of the coating film was determined to cause rapid etching. In addition, cristobalite crystals that has a low Ca content and a high Si content, was foamed on the glass coating film. Therefore, the CAS glass coating film is considered to have low plasma resistance compared to the glass bulk.

Effect of $CaSO_4$ and $BaSO_4$ on the Formation of Portland Cement Clinker (Portland Cement Clinker 생성반응에 미치는 $CaSO_4$$BaSO_4$의 영향)

  • 서일영;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 1974
  • Effect of calcium sulfate and barium sulfate on the formation of portland cement clinker was studied by means of chemical analysis. DTA and X-ray diffraction analysis. In the presence of liquid phase, effect of the additives on the formation of tricalcium silicate was examined according to the reaction, 2CaO.$SiO_3$+CaO$\longrightarrow$3CaO.$SiO_3$, which is the principal reaction in portland cement clinkerization, and optimum conditions in firing clinker concerning amount of additive, firing time and temperature were determined, and its kinetics was referred to. The experimental results are summerized as follow: (1) Appropriate burning temperature range of cement clinker is more limited as the content of calcium sulfate in clinker is increased. Amount of calcium sulfate, firing time and temperature in proper condition of clinkerization is related to each others. Being added suitable quantity of calcium sulfate, firing temperature of clinker can be lowered about $100^{\circ}C$. (2) When 3-5 mole% of calcium sulfate is added, firing time of 15-30 minutes at about $1380^{\circ}C$ is reasonable, and if the content is over7 mole %, firing for 1 hr. or more at $1350^{\circ}C$ is anticipated to be optimum condition. (3) In the reaction of tricalcium silicate formation, the role of barium sulfate as a mineralizer is similar to that of calcium sulfate, but the optimum firing temperature of cement clinker containing barium sulfate tends to be 20-$30^{\circ}C$ higher than that of clinker containing calcium sulfate. (4) When barium sulfate is used as mineralizer, 2-3 mole % of it to tricalcium silicate is recommended and if it is added more than this amount, free CaO is increased rapidly in clinker and alite formation is inhibited.

  • PDF

Photoluminescence Properties of CaAl2O4:RE3+(RE = Tb, Dy) Phosphors (CaAl2O4:RE3+(RE = Tb, Dy) 형광체의 발광 특성)

  • Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • $CaAl_2O_4:RE^{3+}$(RE = Tb or Dy) phosphor powders were synthesized with different contents of activator ions $Tb^{3+}$ and $Dy^{3+}$ by using the solid-state reaction method. The effects of the content of activator ions on the crystal structure, morphology, and emission and excitation properties of the resulting phosphor particles were investigated. XRD patterns showed that all the synthesized phosphors had a monoclinic system with a main (220) diffraction peak, irrespective of the content and type of $Tb^{3+}$ and $Dy^{3+}$ ions. For the $Tb^{3+}$-doped $CaAl_2O_4$ phosphor powders, the excitation spectra consisted of one broad band centered at 271 nm in the range of 220-320 nm and several weak peaks; the main emission band showed a strong green band at 552 nm that originated from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. For the $Dy^{3+}$-doped $CaAl_2O_4$ phosphor, the emission spectra under ultraviolet excitation at 298 nm exhibited one strong yellow band centered at 581 nm and two weak bands at 488 and 672 nm. Concentration-dependent quenching was observed at 0.05 mol of $Tb^{3+}$ and $Dy^{3+}$ contents in the $CaAl_2O_4$ host lattice.

Oxygen Sites in Quaternary Ca-Na Aluminosilicate Classes : O-17 Solid-State NMR Study (사성분계 비정질 Ca-Na 알루미노규산염의 산소주변의 원자구조 : O-17 고상핵자기 공명분광학분석)

  • Sung, So-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.347-353
    • /
    • 2006
  • The atomic-nano scale structures of multi-component aluminosilicate glasses have not been well understood in spite of its implications fur dynamics and generation of magma in the natural system due to lack of suitable spectroscopic and scattering experiments. Here, we report O-17 MAS and isotropic projection of 3QMAS NMR spectra for quaternary Na-Ca silicate glasses $[(CaO)_x(Na_2O)_{1-x}]\;(A1_2O_3)_{0.5}(SiO_2)_6,\;CNAS)$ at 14.1 Tesla where atomic configurations around bridging oxygen (Si-O-Si, Si-O-Al) and non bridging oxygen (Na-O-Si, Ca-O-Si, (Na, Ca)-O-Si) are partially resolved. With increasing Na content, the fraction of Na-O-Si increases while those for bridging oxygens remain constant. The Na/Ca ratio apparently affects the peak widths of bridging oxygen peaks (e.g., Si-O-Si)) and thus the topological entropy as well as chemical shifts of the bridging oxygen peaks, implying that both BOs and NBOs are strongly interacting with network modifying cations The effect of cation field strength on the degree of Al-avoidance was also discussed.

Thermodynamic of Phosphorus in FeO-MnO-CaO-SiO2-MgOsatd. Slag Systems (FeO-MnO-CaO-SiO2-MgOsatd. 슬래그에서의 P의 열역학적 거동)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.188-194
    • /
    • 2009
  • Recently, new extraction technology for manganese nodule has been developed as alternative noble metallic resources. It is important to understand thermodynamic behaviors of phosphorus in low basic slag system from the viewpoint of the refining processing optimization. Thermodynamic behaviors of phosphorus in the $FeO-MnO-CaO-SiO_2-MgO_{satd.}$ slag system were investigated at 1723 K with various oxygen potential and slag composition of low basicity. The experimental results for dependence of phosphorus on oxygen potential and slag basicity indicated that the dissolution mechanism of phosphorus into slag of low basicity could be derived as follows; $[P]+5/4O_2+(O^{2-})=({PO_{3.5}}^{2-})$ Present experimental results implied that stability of phosphorus in slag would be depended on both of $O^{2-}$ (basicity) and content of $Ca^{2+}$ in molten slag. The thermodynamic effect of FeO, MnO and $Na_2O$ on low basicity on phosphate capacity was discussed.