• Title/Summary/Keyword: CaMV

Search Result 181, Processing Time 0.022 seconds

Ultrastructural Aspects of the Mixed Infections with Turnip mosaic virus and Ribgrass mosaic virus in Oriental Cabbage

  • Kim, Jeong-Soo;Cho, Jeom-Deog;Park, Hong-Soo;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.201-204
    • /
    • 2001
  • Ultrastructural observation was conducted for the cells of oriental cabbage, Brassica campestris ssp. pekinensis 'Chungawang', inoculated simultaneously with Turnip mosaic virus (TuMV-ACT2-4vq) and Ribgrass mosaic virus (RMV-Ca1dn2) which were known as major destructive viruses of oriental cabbage in Korea. In cells infected with RMV alone, the virus particles were located as bundle or scattering in cytosols and vacuoles, which were typical ultrastructures of tobamovirus. Vessels of xylem were compacted with RMV particles. The cells infected only with TuMV had the cluster of virus particles scarcely and the typical potyvirus inclusions of scrolls, pinwheels, tubes and laminated aggregates in cytosols. The TuMV particles were jammed lineally between tonoplasts. In double infection, the two unrelated viruses of TuMV-ACT2-4vq and RMV-CA1dn2 were located together in a cell, and typical properties of each virus were also observed. The potyvirus inclusions and the tobamovirus particles were mixed entirely in cytoplasm. The virus particles of RMV wre presented strikingly near and in the center of potyvirus inclusions. In vascular cells, the tobamovirus particles were located abundantly than those in single infection. The potyvirus inclusions were embedded in the cluster of RMV particles in phloem parenchyma cells and the vascular elements were degenerated severely.

  • PDF

Virulence Differentiation of Eight Turnip mosaic virus Isolates Infecting Cruciferous Crops

  • Choi, Hong-Soo;Sohn, Seong-Han;Yoon, Moo-Kyoung;Cheon, Jeong-Uk;Kim, Jeong-Soo;Were, Hassan Karakacha;Cho, Jang-Kyung;Kim, Kook-Hyung;Takanami, Yoichi
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.369-376
    • /
    • 2005
  • Turnip mosaic virus (TuMV) is an infectious viral pathogen on the cruciferous crops, predominantly Chinese cabbage (Brassica campestris subsp. pekinensis) and radish (Raphanus sativus). On the basis of the symptom development in selective differential hosts from indicator host species, Chinese cabbage and Korean radish inbred lines, the representative eight isolates of TuMV were divided into two major groups/or six types. Group I includes Th 1, Ca-ad7, and Cj-ca2-1 isolates, while group II includes the other isolates (rg-pfl, r 9-10, Rhcql-2, Stock and Mustard). According to the molecular phylogenetic analysis, these isolates, however, divided into two groups and two independent isolates. Phylogenetic analysis indicated that four isolates (Tu 1, r9-10, Stock and Rh-cql-2) formed a distinct phylogenetic group, and the other two isolates (Ca-ad7 and Cj-ca2-1) also formed another group. Mustard and rg-pfl isolates did not seem to have any relationship with these two groups. Taken together, these results indicated that virulence differentiation on host plants, molecular phylogenetic analysis of the nucleotide and the deduced amino acid of TuMV coat proteins did not show any relationship. The multi-resistant lines, Wonyae 20026 and BP058 in Chinese cabbage represent valuable genetic materials that can be used for crucifer breeding programs on TuMV resistance, but not in Korean radish.

Expression of gus and gfp Genes in Ggrlic (Allium sativum L.) Cells Following Particle Bombardment Transformation

  • Lacorte, Cristiano;Barros, Daniella
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.135-142
    • /
    • 2000
  • The activity of promoter sequences was evaluated in garlic cells using the $\beta$-glucuronidase (GUS) gene as a reporter. Histochemical GUS assay indicated transient GUS activity in leaf, callus and root cells 48 hours after particle bombardment transformation. Quantitative fluorometric assays in extracts of transformed leaves demonstrated that the CsVMV promoter induced the highest level of gene expression, which was, on average, ten fold the level induced by CaMV35S and by the Arabidopsis Act2 promoters and two fold the level expression observed with a construct containing a double CaMV35S plus the untranslated leader sequence from AMV. No activity or very low levels were observed when cells were transformed with plasmids rontaining the typical monocot promoters, Actl, from rice or the Ubi-1, from maize. The green fluorescent protein (GFP) was also tested as a marker gene for garlic transformation. Intense fluorescence was observed in leaf, callus and root cells transformed with a construct containing the gfp gene under control of the CaMV35 Promoter. No fluorescence was detected when the gfp was under control of the Ubi-1 promoter.

  • PDF

Analysis of Flavonoid 3',5'-Hydroxylase Gene in Transgenic Petunia (Petunia hybrida) Plants (형질 전환된 페튜니아 식물체에서의 Flavonoid 3',5' -Hydroxylase 유전자의 분석)

  • 김영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.323-327
    • /
    • 1998
  • The flavonoid biosynthetic pathway has been studied as a genetic model system, particularly in Petunia hybrida. In order to study the flavonoid biosynthetic pathway, we constructed a fusion gene system between Cauliflower Mosaic Virus (CaMV) 35S promoter and eggplant flavonoid 3', 5'-hydroxylase in pBI 121 plasmid. An optimal condition for plant regeneration was observed when internode explants were cultured on MS medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. For plant transformation internode explants of Petunia hybrida were precultured on BM medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. Putative transgenic plants were selected on medium containing kanamycin 50 mg/L plus cefotaxim 300 mg/L. Putative selected transformants were confirmed by amplification of selectable marker gene (nptII) by polymerase chain reaction (PCR) and Southern hybridization of flavonoid 3',5'-hydroxylase gene.

  • PDF

Primer for the Potato Specific Internal Control DNA and Screening Method for the Genetically Modified Potatoes by Competitive Duplex-PCR (감자 특이 Internal Control DNA 증폭용 Primer와 이를 이용한 유전자 변형 감자의 경쟁적 이중 PCR 검정법)

  • Seo, Hyo-Won;Yi, Jung-Yoon;Cho, Hyun-Mook;Kim, Sung-Yeul
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.235-240
    • /
    • 2002
  • We report the new method for the screening of genetically modified potato by competitive duplex-PCR using the potato specific single oligomer primer for the internal control and CaMV 35S promoter or NOS terminator specific primers. The single oligomer primer (rAGU4A) amplify the potato specific internal control band from the homozygous potato genomic DNA in the RAPD profiles of all analyzed potato varieties. The 530 bp internal control DNA was amplified independently to CaMV 35S promoter or NOS terminator DNA and identified as repetitive or microsatellite DNA of potato (AF541972). With this new technique, the transgenic potatoes which were transformed with vectors contained the different foreign genes are analyzed. In case of the commercialized transgenic potato varieties, 'Hew Leafs', those two genetic factors are used for promoter and terminator respectively So, this new PCR technique should be a promising method of cost effective and accurate screening for the commercialized GM potatoes on market.

The Dose Attenuation according to the Gantry Angle and the Photon Energy Using the Standard Exact Couch and the 6D Robotic Couch (Standard Exact Couch와 6D Robotic Couch를 이용한 광자선의 조사각에 따른 선량 감쇠에 대한 연구)

  • Kim, Tae Hyeong;Oh, Se An;Yea, Ji Woon;Park, Jae Won;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • The objective of this study is to increase the accuracy of dose transmission in radiation therapy using two types of treatment tables, standard exact couch (Varian 21EX, Varian Medical Systems, Milpitas, CA) and 6D robotic couch (Novalis, BrainLAB A.G., Heimstetten, Germany)). We examined the dose attenuation based on the two types of treatment tables and studied the dose of attenuation using the phase (In/Out) for the standard exact couch. We measured the relative dose according to the incident angle of a penetrative photon beam under a treatment table. The incident angle of the photon beam was from $0^{\circ}$ to $360^{\circ}$ in the increments of $5^{\circ}$. The reference angle was set to $0^{\circ}$. Furthermore, the relative dose of the 6D robotic couch was measured using 6 MV and 15 MV, and that of the standard exact couch was measured at the sliding rail position (In-Out) using 6 MV and 10 MV. In the case of the standard exact couch, the measured relative dose was 16.53% (rails at the "In position," $175^{\circ}$, 6 MV), 12.42% (rails at the "In position," $175^{\circ}$, 10 MV), 13.13% (rails at the "Out position," $175^{\circ}$, 6 MV), and 9.96% (rails at the "Out position," $175^{\circ}$, 10 MV). In the case of the 6D robotic couch, the measured relative dose was 6.82% ($130^{\circ}$, 6 MV) and 4.92% ($130^{\circ}$, 15 MV). The photon energies were surveyed at the same incident angle. The dose attenuation for an energy of 10 MV was 4~5% lower than that for 6 MV. This indicated that the higher photon energy, lesser is the attenuation. The results of this study indicated that the attenuation rate for the 6D robotic couch was confirmed to be 1% larger than that for the standard exact couch at 6 MV and $180^{\circ}$. In the case of the standard exact couch, the dose attenuation was found to change rapidly in accordance with the phase ("In position" and "Out position") of the sliding rail.

Complementary DNA Cloning and Restriction Mapping of Nuclear Inclusion Body and Coat Protein Genes of Turnip Mosaic Virus-Ca Strain Genomic RNA (순무모자이크 바이러스 Ca계통 핵봉입체와 외피단백질 유전자의 cDNA 클로닝 및 제한효소 지도작성)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.235-239
    • /
    • 1994
  • Viral RNA was extracted from purified Chinese cabbage strain of turnip mosaic virus (TuMV-Ca) from infected leaves of turnip. Polyadenylated genomic viral RNA was recovered by oligo (dT) cellulose column chromatography and used as a template for the synthesis of complementary DNA (cDNA). Recombinant plasmids contained cDNA ranged from about 900 bp to 2, 450 bp were synthesized. Among the selected 41 transformants, pTUCA31 and pTUCA35 had over 2 Kbp cDNA insert. Restriction endonuclease patterns of the clones examined were very similar among them. Clones pTUCA23 and pTUCA31 were overlapped with pTUA35. The longest clone pTUCA35, encoding 3'-end, showed that it contained two sites for EcoRI, and one site for BamHI, ClaI, HincII, SacI and XbaI, respectively. The restriction mapping indicated that the clone pTUCA35 contained partial nuclear inclusion body gene, complete coding region of the coat protein and 3' untranslated region of TuMV-Ca genomic RNA.

  • PDF

The Defect Characterization of CaWO4 Crystals by Doppler Broadening Positron Annihilation Spectroscopy (DBPAS를 이용한 CaWO4 결정의 결함특성)

  • Kim, Chang-Gyu;An, Chang-Mo;Song, Gi-Yeong;Lee, Jong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.359-362
    • /
    • 2002
  • DBPAS has been used to characterize atomic level defect structures in materials. In this investigation the numerical analysis of the Doppler spectra was restricted to the determination of the shape parameter, S, defined as the ratio between the total amount of counts in a central portion of the spectrum and the total amount of counts. As samples were exposed by X-ray increasing from 3, 6, and 9 Gy with 6 MV, and 10 MV each and also by E-beam increasing the energies with 6 MeV, 9 MeV, 12 MeV, and 20 MeV. The S-parameter values were increased as increasing the exposed time and the energies. The S-parameters of the large and small size grains in $CaWO_4$ were measured. The S-parameter of the small size grains in $CaWO_4$ was resulted in larger values.

Nucleotide Sequence Analysis and Secondary Structure Modeling of the 3'-Noncoding Regions of Two Korean Strains of Turnip Mosaic Virus (순무 모자이크 바이러스 두 한국계통의 3' 말단 비번역부위에 대한 염기서열분석 및 2차구조 모델링)

  • 최장경;류기현;최국선;박원목
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.271-277
    • /
    • 1995
  • The RNA nucleotide sequences of the 3/-noncoding regions (3'-NCRs) of two Korean strains of turnip mosaic virus (TuMV), Ca and cqs, have been determined from their cDNA clones that encompassed the 3'-terminal regions of the viral genomic RNAs. The 3'-NCRs of both strains were 209 nucleotides long, terminated with GAC residues and poly (A) tails. The potential polyadenylational signal motif, UAUGU, was located 140 nucleotides upstream from the poly (A) tail in each of the virus. A highly conserved hexanucleotide sequence [A G U G A/U G/C], which was common in the 3'-NCRs of the potyvirus RNAs, was also found at the regions of 119 bases upstream from the 3'-end. Comparison of the 3'-NCRs of the two Korean isolates with those of four strains from Canada, China and Japan showed significantly identical genotypes (94.3∼99.5%). The secondary structure of three loops with long stems was found within the 3'-NCRs by sequence analysis. The substituted bases in the region among the six TuMV strains did not alter their secondary structures. Length of the 3'-NCRs of the know 11 potyviral RNAs and TuMV RNAs was different from one another and their nucleotide sequences showed 55.7% to 24.0% of homology. The 3'-NCR, therefore, is considered to be useful for phylogenetic studies in potyviruses.

  • PDF

Manipulation of Antioxidative Mechanism in Chloroplasts

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.79-84
    • /
    • 1999
  • Oxidative stress is one of the major environmental stresses to plants. Reactive oxygen species (ROS) generated during metabolic processes damage cellular functions and consequently lead to cell death. Fortunately plants have in vivo defense system by which the ROS is scavenged by enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). In attempts to understand the protection mechanism of plant against oxidative stress, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plansts thet expressed both SOD and APX in chloroplast using Agrobacterum-mediated transformation and evaluated their protection capabilities against methyl viologen (MV, paraquat) -mediated oxidative damage. Three double transformants (CAI, CA2, and CA3) expressed the chimeric CuZnSOD and chimeric APX in chloroplast, and one transformant (AM) expressed the chimeric APX and chimeric MnSOD in chloroplast. In addition, we obtained three lines of transformants (C/Al, C/A2, and A/C) that expressed the APX and SOD than control plants, and more resistant to oxidative stress caused by MV. TRansformants (C/A and A/C) overexpressing MnSOD, CuZnSOD and APX at the same time showed the highest resistance to MV-mediated oxidative stress among the transformants.

  • PDF