• 제목/요약/키워드: CaFPS (Centella asiatica Farnesyl Diphosphate Synthase)

검색결과 2건 처리시간 0.016초

Cloning and Expression of a Farnesyl Diphosphate Synthase in Centella asiatica (L.) Urban

  • Kim, Ok Tae;Ahn, Jun Cheul;Hwang, Sung Jin;Hwang, Baik
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.294-299
    • /
    • 2005
  • A cDNA encoding farnesyl diphosphate synthase (FPS; EC2.5.1.1/EC2.5.1.10) was isolated from Centella asiacita (L.) Urban, using degenerate primers based on two highly conserved domains. A full-length cDNA clone was subsequently isolated by rapid amplification of cDNA ends (RACE) PCR. The sequence of the CaFPS (C. asiatica farnesyl diphosphate synthase) cDNA contains an open reading frame of 1029 nucleotides encoding 343 amino acids with a molecular mass of 39.6 kDa. The deduced CaFPS amino acid sequence exhibits 84, 79, and 72%, identity to the FPSs of Artemisia annua, Arabidopsis thaliana, and Oryza sativa, respectively. Southern blot analysis suggested that the C. asiatica genome contains only one FPS gene. An artificially expressed soluble form of the CaFPS was identified by SDS-PAGE. It had high specific activity and produced farnesyl diphosphate as the major isoprenoid.

인삼에서 Farnesyl Diphosphate Synthase 과발현이 진세노사이드 생합성에 미치는 영향 (Overexpression of Farnesyl Diphosphate Synthase by Introducing CaFPS Gene in Panax ginseng C. A. Mey.)

  • 박홍우;김옥태;현동윤;;김장욱;김영창;방경환;차선우;최재을
    • 한국약용작물학회지
    • /
    • 제21권1호
    • /
    • pp.32-38
    • /
    • 2013
  • FPS (farnesyl diphosphate synthase) plays an essential role in organ development in plants. However, FPS has not previously been identified as a key regulatory enzyme in triterpene biosynthesis. In order to investigate the effect of FPS on ginsenosides biosynthesis, we over-expressed FPS of Centella asiatica (CaFPS) in Panax giseng adventitious roots. PCR analysis showed the integrations of the CaFPS and hygromycin phosphotransferase genes and we ultimately selected three lines. The result of Southern blot analysis demonstrated the introduction of the CaFPS gene into genome of ginseng. In addition, the results of RT-PCR analysis revealed that CaFPS gene overexpression induced an accumulation of its transcription in the ginseng adventitious roots. To determine whether or not the overexpression of the CaFPS gene contributes to the downstream gene expression associated with triterpene biosynthesis, the level of mRNAs was analyzed by real-time PCR. The result showed that no differences were detected in any expression of all genes. To determine quantitatively the content of ginsenosides in transgenic ginseng adventitious roots, HPLC analysis was conducted. The content of total 7 ginsenosides was increased to 1.8, 1.4, and 1.7 times than that of the controls, respectively. This indicated that the overexpression of CaFPS in ginseng adventitious roots causes an increase in ginsenoside content, although down stream genes of FPS gene were suppressed by CaFPS overexpression.