• Title/Summary/Keyword: Ca2+ Uptake

Search Result 416, Processing Time 0.032 seconds

Effect of Cosmetics Contained Isotonic Water Mimicked Body Fluid on Cell Activities and Skin (생체 모사수 화장품이 세포 활성과 피부에 미치는 효과)

  • Park, Sun Young;Lee, Sung Hoon;Kim, Eun Joo;Choi, So Woong;Kim, Ji Young;Cho, Seong A;Cho, Jun Cheol;Lee, Hae Kwang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.195-201
    • /
    • 2014
  • Body fluid has been studied for diverse fields like Ringer's solutions, artificial joint fluids, cell growth culture media because it plays a crucial role in controlling body temperature and acts as a solvent for diverse metabolite processes in the body and delivery media of mineral, energy source, hormone, signal and drug from and to cell via blood or lymphatic vessel by osmotic pressure or active uptake. Stratum corneum containing extracellular lipids and NMF (natural moisturizing factor) absorbs atmospheric water residing outside of cells and utilize it to hydrate inside of their own. This process is related to skin barrier function. In this study, we conducted the cell viability test with Cell Bio Fluid $Sync^{TM}$, which mimicks body fluids including amino acids, peptides, and monosaccharides to strengthen skin barrier, and the clinical skin improvement test with cosmetics containing Cell Bio Fluid $Sync^{TM}$. In the cell viability test, HaCaT cell was treated with PBS for 3 hours, followed by the treatment of a cell culture medium (DMEM) and isotonic solution (PBS) and Cell Bio Fluid $Sync^{TM}$ for 3 hours each. Then, MTT assay and image analysis were conducted. In the clinical skin improvement test, twenty-one healthy women participated. Participants applied cosmetics containing Cell Bio Fluid $Sync^{TM}$ on their face for a week and evaluated the skin hydration, skin roughness, brightness and evenness. All measurements were conducted after they washed off their face and took a rest under the constant temperature ($22{\pm}2^{\circ}C$) and constant humidity conditions ($50{\pm}5%$) for 20 minutes. All the data were analyzed by SPSS (version 21) software program. Results showed that Cell Bio Fluid $Sync^{TM}$ improved both the cell viability and in vivo skin conditions such as skin hydration, roughness, brightness and evenness.

Crop Growth and Nutrient leaching from Soil with Application of Urea and Compost in Volcanic Ash Soil (화산회토에서 퇴비 및 요소시용에 따른 토양중 $NO_3$-N, 양이온의 용탈)

  • 강봉균;송창길
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.2
    • /
    • pp.101-115
    • /
    • 2001
  • Nitrogen applied as fertilizer for crop production is partly absorbed by plant , and the remaining nitrogen in soil might be leached out through complicated processes to the subsoil layer Especially, NO$_3$-N in leachate causes environmental pollution. The purpose of this study was focused on understanding of uptake of nutrients by plants, the behaviors of nutrients in soil and the possibility of leaching loss when nitrogen fertilizer and completely decomposed compost were applied. Lysimeters(Volume 0.15㎥, Diameter 62cm, Height 62.8cm) were installed for collecting leachate in the Jeju volcanic ash soils. Lysimeter study consisted of thirteen treatments : fallow, fallow with weeding, cropping without fertilizer and compost, three N fertilizer soil surface applications(16, 32, 64kg/10a), three N fertilizer and compost soil surface applications(16+800, 32+1600, 64+32kg/10a), two water dissolved N fertilizer applications(16, 32kg/10a), and low and high plant densities. N fertilizer was applied as urea. The growth of com(preceding crop) and potatoes(succeeding crop) and leaching loss were determined during the experimental period. The results obtained were summarized as follows ; With Increased N, pH of leachate tended to decrease and NO$_3$-N concentration of leachate increased. NO$_3$-N leaching loss was remarkably greater in soil from the bare plot without fertilization and the weed control than from plots with medium N rate and was least in the cropping plot without fertilization. NO$_3$-N concentration in leachates from the water dissolved N fertilizer application plots was 64% of that from the soil surface application plots. The concentration of Ca and K ions and the leaching loss of these ions were least from the cropping plot without fertilization and were greatest from bare plots(T1 and T2) without fertilization. The proportion of leaching and residual N in soil increased as N rate increased indicting that higher N rates increase the possibility of N leaching to subsoil layer The proportion of N leaching losses was lower at the low N rate and the high plant density. In future, fertilization prescription which can maximize fertilizer use efficiency and minimize the pollution of ground water will be needed for conserving the environments.

  • PDF

Growth-promoting Effect of New Iron-chelating Fertilizer on Lettuce (산세수와 게껍질을 이용한 신기능성 철분 비료의 상추 생육 촉진 효과)

  • Hwang, Ji Young;Jun, Sang Eun;Park, Nam-Jo;Oh, Ju Sung;Lee, Yong Jik;Sohn, Eun Ju;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.390-397
    • /
    • 2017
  • Iron (Fe) is an important micronutrient for the health and growth of plants. Iron is usually provided by fertilizers, and iron-chelate fertilizers are well absorbed by plants. This study presents the plant growth-promoting effects of a new functional iron fertilizer, Fe-chelating crab shell powder (FCSP), which is generated from the chelation of Fe ions with crab shell powder. Iron chelate was derived from spent pickling liquor, which is rich in reductive iron, iron(II) oxide. To analyze the effects of FCSP on plant growth, we treated lettuce with several concentrations of FCSP in both lab- and field-scale experiments. In the lab-scale test, the treatment of 50 ppm of FCSP highly promoted growth and resulted in increases in the size, weight, number and chlorophylls content of leaves of plants compared to the treatment of crab shell powder. Fifty ppm of FCSP also increased the size and weight of leaves up to 2 times compared to the application of chemical fertilizer and/or compost in field conditions. In addition, the FCSP treatment resulted in the highest ion uptake of Fe in lettuce leaves. Moreover, FCSP led to increases in the amounts of Fe, Ca, available phosphorus and organic matter in treated soil, indicating that soil quality was improved. Taken together, our results demonstrate that FCSP promotes lettuce growth via enhancement of Fe availability and improves soil quality. Therefore, FCSP can be utilized as a new functional iron fertilizer.

Weed Occurrence and Competitive Characteristic under Different Cultivation types of Rice(Oyriza sativa L.) - 4. Differences in Competitive Characteristics for Mineral Nutrition (수도(水稻) 재배유형별(栽培類型別) 잡초발생(雜草發生) 양상(樣相)과 경합특성(競合特性) - 제(第) 4 보(報). 무기양분(無機養分)에 대한 경합특성(競合特性)의 차이(差異))

  • Im, I.B.;Guh, J.O.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.122-131
    • /
    • 1993
  • Differences in competitive characteristics for mineral nutrition were compared with rice and weeds according to rice planting types like the traditional hand transplanting, machine transplanting of young(10days old) and mature(30days old) seedling, flood direct seeding of germinated seeds and dry direct seeding of dry seeds. There was a slight competition for such nutrients as N, P, K, Ca, and Mg by E. crus-galli and E. kuroguwai in transplanting cultivations. However, nutrient uptake by rice in direct-seedings was severely inhibited throughout the whole growth period by the two weeds including annual weeds such as S. Juncoides and C. difformis. The competition for nutrients at different cultivation types was mainly governed by the dominant weeds.

  • PDF

Analysis of Soil and Leaf Characteristics of Pear Orchards with Lime-Induced Chlorosis Leaves (배나무 엽 황화증상 발생 과원의 토양 및 엽 특성 분석)

  • In Bog Lee;Dae Ho Jung;Pyoung Ho Yi;Seung Tak Jeong;Yoon Kyeong Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.331-337
    • /
    • 2023
  • Physiological disorders in pear fruit are mainly caused by problems during the growing season, such as lack of calcium in the soil, poor drainage, low porosity, vigorous pruning, and excessive fruiting. In this study, soil physicochemical properties and leaf characteristics were analyzed in pear orchards in four regions of Korea where chlorosis symptoms occurred to determine the causes of chlorosis. The color of chlorotic leaves was diagnosed using the naked eye or SPAD and Hunter values. The soil of the chlorotic orchard had a significantly higher soil pH than that of the regular orchard. Although adequate soil depth was not significantly associated with chlorosis, combined with over-fertilization of the soil with lime, it could potentially impair plant iron uptake. Chlorotic leaves had significantly lower iron and calcium contents and significantly higher magnesium contents than those of regular leaves. Therefore, the intensive occurrence of chlorosis during secondary shoot development around June and July when it is hot and humid may be due to impaired iron and calcium absorption, leading to physiological disorders. To solve this problem, avoiding the over-application of lime and applying foliar fertilizers containing chelated iron is recommended.

Growth Characteristic and Nutrient Uptake of Water Plants in Constructed Wetlands for Treating Livestock Wastewater (인공습지를 이용한 축산폐수처리장에서 수생식물의 생육특성과 영양염류 흡수특성)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Lee, Choong-Heon;Choi, Jeong-Ho;Lee, Sang-Won;Lee, Dong-Jin;Ha, Yeong-Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.351-358
    • /
    • 2012
  • BACKGROUND: Constructed wetlands for wastewater treatment are vegetated by wetland plants. Wetland plants are an important component of wetlands, and the plants have several roles in relation to the livestock wastewater treatment processes. The objectives of this study were to investigate the growth characteristics and nutrient absorption of water plants in constructed wetlands for treating livestock wastewater. METHODS AND RESULTS: In this study, livestock wastewater treatment plant by constructed wetlands consisted of $1^{st}$ water plant filtration bed, $2^{nd}$ activated sludge bed, $3^{rd}$ vertical flow(VF), $4^{th}$ horizontal flow(HF) and $5^{th}$ HF beds. Phragmites communis TRINIUS(PHRCO) was transplanted in $3^{rd}$ VF bed, Iris pseudoacorus L(IRIPS) was transplanted in $4^{th}$ HF bed and PHRCO, IRIPS and Typha orientalis PRESEL(THYOR) were transplanted in $5^{th}$ HF. Growth of water plants in constructed wetlands were the highest in October. The IRIPS growth was higher than other plant as 264 g/plant in October. The absorption of nitrogen and phosphorus by IRIS were 3.38 g/plant and 0.634 g/plant, respectively. The absorption of K, Ca, Mg, Na, Fe, Mn, Cu and Zn by water plants were higher in the order of IRIPS > THYOR > PHRCO. CONCLUSION(S): The absorption of nutrients by water plants were higher on the order of IRIPS > THYOR > PHRCO in constructed wetlands for treating livestock wastewater.

Effect of Nutrient Solution Concentration on the Growth and Mineral Uptake of Various Wrap-up Vegetables and Herbs Grown with Mixed Planting in DFT Hydroponics (담액 수경재배 시 양액농도 처리가 혼식한 쌈 채소류와 허브류의 생육과 무기양분 흡수에 미치는 영향)

  • Seo, Tae-Cheol;Rho, Mi-Young;Gang, Nam-Jun;Lee, Seong-Chan;Choi, Young-Hah;Yun, Hyung-Kweon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.395-406
    • /
    • 2007
  • The twenty seven wrap-up vegetables (13 Compositae, 14 Brassicaceae) and seven herbs (6 Labiatae, 1 Umbelliferae) were cultivated with a deep flow technique (DFT) hydroponic beds and treated with 3 levels of nutrient solution concentrations of 1.2, 2.4, and $3.6dS{\cdot}m^{-1}$ in summer and autumn season. The pH and electrical conductivity (EC) change of nutrient solution, fresh weight, and mineral contents of plants were investigated. The pH was maintained lower in high electrical conductivity (EC) treatment and in summer than autumn. EC of nutrient solution in EC $3.6dS{\cdot}m^{-1}$ treatment increased up to $4.8dS{\cdot}m^{-1}$ during the growing period in summer season. The growth of tested plants showed high variations by plant species and nutrient solution concentrations. The coefficient variation (CV) of the shoot fresh weight of plants was higher in summer than autumn. The growth of Compostiae and herbs was better at EC $1.2dS{\cdot}m^{-1}$, and 14 Brassicaceae was better at EC $2.4dS{\cdot}m^{-1}$ in summer. In autumn, the growth was better at EC $2.4dS{\cdot}m^{-1}$ in all plants except kale 'TBC F1' and red rape 'honchaetae'. In mineral contents, total nitrogen and potassium were higher in autumn than summer. Total nitrogen, potassium, calcium, magnesium were higher in Brassicaceae than others. Iron and manganese, however, were higher in Compositae. As the results, this study suggests that mixed planting of 27 wrap-up vegetables and 7 herbs in DFT hydroponics in two seasons was possible and EC $1.2dS{\cdot}m^{-1}$ in summer and EC $2.4dS{\cdot}m^{-1}$ in autumn be recommended as for the nutrient solution concentration to produce them safely year round.

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.

Inhibitory Role of Polyamines in Dexamethasone-induced Apoptosis of Mouse Thymocytes (Dexamethasone에 의한 생쥐 흉선의 Apoptosis에서 Polyamine의 역할)

  • Choi, Sang-Hyun;Kim, Yong-Hoon;Hong, Gi-Hyun;Shin, Kyung-Ho;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.113-123
    • /
    • 1996
  • It has been well known that polyamines ensure the stability of chromatin structure and the fidelity of DNA transcription. This study was carried out to evaluate the effect of polyamines on the apoptosis of mouse thymocytes induced by dexamethasone and polyamine synthesis inhibitors. 1) In the histological death findings of thymocytes double-stained with acridine orange and ethidium bromide, the apoptotic and the necrotic fractions (AF; NF) in the control group were $9.4{\pm}4.2%$ and $4.5{\pm}5.3%$, respectively. Dexamethasone $(3\;{\times}\;10^{-8}\;M:\;DX)$ in creased AF upto $52.0{\pm}8.1%$ and did not change NF, but A23187 $(5\;{\times}\;10^{-7}\;M:\;A2)$ increased AF and NF upto $45.0{\pm}8.9%$ and $20.5{\pm}10.6%$, respectively. 2) The thymocyte viability was significantly reduced by DX, DHEA $(1\;{\times}\;10^{-4}\;M)$, A2, DFMO $(1\;{\times}\;10^{-4}\;M)$, and $MGBG\;(1\;{\times}\;10^{-4}\;M)$, respectively. It was, however, little affected by $aminoguanidine\;(1\;{\times}\;10^{-4}\;M:\;AG)$, $putrescine\;(1\;{\times}\;10^{-5}\;M:\;PT)$, $spermidine\;(1\;{\times}\;10^{-5}\;M:\;SD)$, and $spermine\;(1\;{\times}\;10^{-5}\;M:\;SM)$. 3) The genomic DNA of mouse thymocyte was markedly fragmented by DX and A2, respectively, and to a lesser extent, by DHEA, but was little affected by MGBG, DFMO, AG, and each of polyamines. 4) The DX induced reduction of thymocyte viability was moderately attenuated by DHEA, but little affected by DFMO, MGBC, and AG. However, SM significantly attenuated the viability reduction induced by A2 as well as DX. 5) The thymocyte viability reduction by MGBG and DFMO was significantly attenuated by only SM among three polyamines applied in this study. 6) The thymocyte viability redution by combined treatments of DX with DFMO and MGBG, respectively, was significantly attenuated by SM, and moderately by PT. But the viability reduction by combined treatment of DX with AG or DHEA was not affected by polyamines. These results suggest that polyamines, particularly spermine, might play the inhibitory role in thymocyte apoptosis and the inhibitory effect can be ascribed in part to the increase of polyamine uptake by thymocytes pretreated with DFMO and MGBG.

  • PDF

Cell Protective Effects of Enzymatic Hydrolysates of Citrus Peel Pectin (귤피 펙틴 유래 효소적 가수분해물의 세포 보호 효과)

  • Kwon, Soon Woo;Ko, Hyun Ju;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.75-85
    • /
    • 2016
  • Pectin, a naturally occurring polysaccharide, has in recent years attracted considerable attention. Its benefits are increasingly appreciated by scientists and consumers due to its safety and usefulness. The chemistry and gel-forming characteristics of pectin have enabled to be used in pharmaceutical industry, health promotion and treatment. Yet, it has been rarely used in cosmetics because of its incompatibility with many cosmetic ingredients, including alcohols, and unstable viscosity of pectin gels under various pH and salt conditions. However, low-molecular-weight pectin oligomers have excellent biological activities, and depolymerization of pectin to produce cosmetic ingredients would be very useful. In this study, we attempted the development of cosmetic ingredients using pectin with an excellent effect on human skin. We developed a bio-conversion process that uses enzymatic hydrolysis to produce pectin hydrolysates containing mainly low-molecular-weight pectin oligomers. Gel permeation chromatography was used to determined the ratio of hydrolysis. The molecular weight of the pectin hydrolysates obtained varied between 200 and 2,700 Da. The two newly developed low-molecular-weight pectin hydrolysates, LMPH A and B, had higher anti-oxidative activities than pectin or D-galacturonic. Exposure to UVB radiation induces apoptotic cell death in epidermal cells. Annexin V binding and propidium iodide uptake were measured by flow cytometry to evaluate UVB-induced cell death in HaCaT cells. Both LMPH A and B reduced UVB-induced cell death and increased cell proliferation by 22% and 30% at 0.5% concentration respectively, while pectin had no significant activity. In conclusion, this study suggests that the newly developed low-molecular-weight pectin hydrolysates can be used as safe and biologically active cosmetic ingredients.