• Title/Summary/Keyword: Ca-ion concentration

Search Result 476, Processing Time 0.027 seconds

Characteristics of Groundwater Quality in Sasang Industrial Area, Busan Metropolitan City (부산시 사상공단지역의 지하수 수질 특성)

  • Hamm, Se-Yeong;Kim, Kwang-Sung;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Sung, Ig-Hwan;Jang, Seong
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.753-770
    • /
    • 2006
  • In urban areas, groundwater pollution is heavily affected by urbanization with land use types. This study aims to characterize groundwater quality and contamination in Sasang industrial area of Busan Metropolitan City where metalworking, machinery and footwear factories are located. Busan Metropolitan City is the highest in the utilization of groundwater resources among the metropolitan cities in Korea. $K^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-}\;and\;HCO_3^-$ concentrations, and electrical conductivity (EC), total dissolved solids (TDS) and salinity are high in the areas near the Nakdong River. The results are attributed to the influence of salt water which intruded into the coastal sediments during sedimentation. In addition, the dominant chemical type of Ca-Cl indicates the influence of salt water in the geological formations as well as anthropogenic pollution. $SiO_2$ ion is interpreted to originate from both water-silicate mineral reactions and the decomposition of cement concretes. Trichloroethylene (TCE) was detected at 12 sites of total 18 sites. However, tetrachloroethylene (PCE) was detected at f sites and 1.1.1-trichloroethane (TCA) at 3 sites. According to the factor analysis, factor 1 was explained by 49.8%, factor 2 19.8%, and factor 3 11.0% with total 80.6% explanation. pH, TDS, salinity, $Ca^{2+},\;K^+,\;Mg^{2+},\;Na^+,\;Al^{3+},\;As^{3+},\;Cl^-\;and\;Fe^{2+}$ were positively highly loaded to factor 1. The chemical components loaded to factor 1 represent the chemical characteristics of both industrial pollution and influence by salt water. Based on the cluster analysis and distribution pattern of chemical components, the concentration of $Na^+,\;Ca^{2+},\;Cl^-,\;SO_4^{2-}\;K^+,\;and\;Mg^{2+}$ is high in the riverside area of the Nakdong River composed of coastal sediments that is influenced by salt water. The downstream area of the Hakjang Stream is judged to be affected by both salt water and artificial pollution. The other part of the study area is interpreted by anthropogenic pollution.

Two Crystal Structures of Bromine Sorption Complexes of Vacuum Dehydrsted Fully Cd(II) -Exchanged Zeolite A (카드뮴 이온으로 완전히 치환된 제올라이트 A를 진공 탈수한 후 브롬 증기로 흡착한 두개의 결정구조)

  • 고광락;장세복
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.9-22
    • /
    • 1992
  • Two crystal structures of bromine sorption complexes of vacuum dehydrated Cd(ll)-exchanged zeolite A have been determined by single-crystal xray diffraction techniques in the cubic space group Pm3m at 21(1) ℃. Both crystals were ion exchanged in flowing streams of exchange solution In which mole ratio of Cd(NO3)2 and Cd(OOCCH3)B was 1:1 with a total concentration of 0.05 M. First crystal was dehydrated at 450℃ and 2 ×10-6 Torr for two days. Second crystal was dehydrated at 650℃ and 2 ×10-6 Torr for two days. Both crystals were then treated with 160 Torr for two days. Second crystal was dehydrated at 650℃ and 2 × 10-6 Torr for two days. Both crystals were then treated with 160 Torr of zeolitically dried bromine vapor at 24℃. Full-matrix least-squares refinements of toe first crystal(a: 12.250(1) A )· and the second crystal(a: 12.204(2) A ) have contecoed to final error indices, Rl:0.075 and Ra:0.079 with 212 reflections, and Rl : 0.089 and Ra = 0.078 with 128 reflections, respectively, for which I >3σ(I). Crystallographic analyses of both crystals show that six Cd2+ ions are located on two different threefold axes of unit cell associated with 6-ring oxygens. Each 4.5 Cd2+ ion is recessed ca.0. 441 A Into the large cavity to complex either with Brsor with Br3from the (111) plane of 0(3), whereas each 1.5 Cd2+ ions recessed ca. 0.678 A into we sodalite unit. Approximately 1.5 Br5-and 1.5 Br3-ions are sorbed per unit cell. Each Brsion interacts and stabilized by complexing with two Cd2+ ions and framework oxide ions, while each Br3ion interacts with one Cd2+ ion and framework oxide ions. Because of residual water molecules the following reactions may be occurred inside of zeolite cavity:

  • PDF

Growth Characteristics and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Different Light Intensities and Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and Flow 저면관수 시스템에서 광강도와 양액농도에 따른 칼랑코에(Kalanchoe blossfeldiana 'Marlene') 생육 및 양분흡수 특성)

  • Noh, Eun-Hee;Jun, Ha-Joon;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.187-194
    • /
    • 2011
  • The objective of this study was to determine the effects of light intensity and electrical conductivity (EC) of nutrient solution on the growth and nutrient uptake of potted kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') with growth stage in ebb and flow subirrigation systems. The plants were grown at four ECs of 0.5, 1.0, 1.5, and 2.0 $dS{\cdot}m^{-1}$ for seedling stage and four ECs of 1.0, 1.5, 2.0, and 3.0 $dS{\cdot}m^{-1}$ for short day stage under three daily photosynthetic photon flux (PPF) of 6.5, 10.3, 18.2 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. At seedling stage, plant height was the longest under the lowest light intensity, and particularly dry weights and leaf areas were the highest at PPF 10.3 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. Dry weights and leaf areas were the highest at EC 1.5 $dS{\cdot}m^{-1}$ regardless of light intensity. At short day exposure, plant height was the longest under the lowest light intensity. Dry weights, leaf areas, and number of pedicels of the plants significantly increased as light intensity increased. Under all light intensity conditions, dry weights, leaf areas, and number of pedicles increased until EC becomes to 1.0 - 2.0 $dS{\cdot}m^{-1}$. And after reached the highest at EC 2.0 $dS{\cdot}m^{-1}$, they decreased at EC 3.0 $dS{\cdot}m^{-1}$. By comparing the ion uptakes at EC 1.5 $dS{\cdot}m^{-1}$ of seedling stage and EC 2.0 $dS{\cdot}m^{-1}$ of short day stage in which the plants grew better, we confirmed that ion balance of nutrient solution among $NO_3{^-}$-N, $H_2PO_4{^-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were significantly changed at short day stage compared to seedling stage. For better growth of the plants, both ion balance and EC of nutrient solution should be considered under different light intensities at short day stage while control of EC is enough at seedling stage.

Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea (북한산국립공원 내 초미세먼지 농도 및 화학적 특성)

  • Kang, Seokwon;Kang, Taewon;Park, Taehyun;Park, Gyutae;Lee, Junhong;Hong, Je-Woo;Hong, Jinkyu;Lee, Jaehong;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.457-468
    • /
    • 2018
  • To improve understanding of the physico-chemical characteristics of aerosols in the national park and comparing the air pollution between national park and the urban area nearby national park, the aerosol characterization study was conducted in Bukhansan National Park, Seoul, from July through September 2017. Semi-continuous measurements of $PM_{2.5}$ using PILS (Particle Into Liquid System) coupled with IC (Ion Chromatography) and TOC (Total Organic Carbon) analyzer allowed quantification of concentrations of major ionic species($Cl^-$, $SO_4{^{2-}}$, $NO_3{^-}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg{^{2+}}$ and $Ca{^{2+}}$) and water soluble organic carbon (WSOC) with 30-minute time resolution. The total mass concentration of $PM_{2.5}$ was measured by T640 (Teledyne) with 5-minute time resolution. The black carbon (BC) and ozone were measured with a minute time resolution. The timeline of aerosol chemical compositions reveals a strong influence from urban area (Seoul) at the site in Bukhansan National Park. Inorganic aerosol composition was observed to be dominated by ammoniated sulfate at most times with ranging from $0.1{\sim}32.6{\mu}g/m^3$ (6.5~76.1% of total mass of $PM_{2.5}$). The concentration of ammonium nitrate, a potential indicator of the presence of local source, ranged from below detection limits to $20{\mu}g/m^3$ and was observed to be highest during times of maximum local urban (Seoul) impact. The total mass of $PM_{2.5}$ in Bukhansan National Park was observed to be 10~23% lower than the total mass of $PM_{2.5}$ in urban area (Gireum-dong and Bulgwang-dong, Seoul). In general, ozone concentration in Bukhansan National Park was observed to be similar or higher than urban sites in Seoul, suggesting additional biogenic VOCs with $NO_x$ from vehicle emission were to be precursors for ozone formation in Bukhansan National Park.

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.

Effect of Concentration of Nutrient Solution on Water and Nutrient Uptake of Tomato Cultivars in Hydroponics (배양액 농도가 수경재배 토마토의 품종별 생육과 양수분 흡수특성에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kang, Nam Jun
    • Journal of agriculture & life science
    • /
    • v.53 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • This study was carried out to acquire basic data for a long-term hydroponic culture through investigating water and inorganic ion uptake characteristics at different EC level of nutrient solution of three tomato varieties. Three different tomato varieties, the European type(cv. Daphnis), the Asian type(cv. Super Doterang) and cherry type(cv. Minichal), were used for the investigation. Also, the deep flow technique(DFT) was applied. The three different electrical conductivity(EC) level(1.0, 2.0, 3.0, and 4.0 dS·m-1) of hydroponic nutrient solution were used as variable. At a high EC level of nutrient solution, the leaf area and fresh weight decreased in the early stage, and its growth(plant height, leaf number, leaf area, fresh-weight) was poor with salt stress. Result showed that the higher the EC level of the nutrient solution, the lesser was water uptake. The water uptake was not significantly different from varieties in the first survey, but In the second survey, the 'Daphnis' did not show a significant decrease in water uptake in the EC level higher than 2.0 dS·m-1., on the other hand, 'Super Doterang' presented very low water uptake. At a low EC level, N, P, and K, were absorbed more than the concentration of the irrigation water, while Ca, Mg, S uptake were low. At a high EC level, almost ions absorbed less than 50% of the initial concentration of irrigation water. Thus, imbalance among ions was severe at low EC level compared to high EC level. 'Daphnis' was a variety that effectively utilize nutrients under nutrient stress, showing high absorption at low concentration condition and low absorption at high concentration condition. However, 'Daphnis' suffered most seriously by absorbing nutrients excessively.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Effect of Nutrient Solution Concentration in the Second Half of Growing Period on the Growth and Postharvest Quality of Leaf Lettuce (Lactuca sativa L.) in a Deep Flow Technique System (담액수경재배 시 재배후기 양액농도가 상추의 생장 및 수확후 품질에 미치는 영향)

  • Lee, Jung-Soo;Chang, Min-Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.456-464
    • /
    • 2017
  • We examined the effect of nutrient solution concentration in the second half of growing period on the pre- and postharvest characteristics of two leaf lettuce cultivars, 'Geokchima' and 'Cheongchima'. Plants were grown hydroponically in a deep flow technique (DFT) system at different concentrations of National Horticulture Research Institute hydroponic nutrient solution: 1/2 strength (S), 1S, 2S, and 4S. Lettuce leaf growth, number of leaves, and shoot fresh weight of both cultivars were greatest in plants grown in the 1S treatment. Compared to other treatments, pigment and nutrient ion contents were greater in the 4S treatment. Growth of lettuce was greatest in the 1S treatment, and decreased at higher or lower concentrations of nutrient solution. However, postharvest characteristics such as fresh weight loss, leaf chlorophyll level, and external appearance were better in both cultivars when grown in 2S solution. Variations in weight loss and SPAD values were smallest in the 2S treatment. These results show that the optimal nutrient concentration for growth does not necessarily provide the optimal postharvest storability.

Chemical Compositions Trends of Airbone PArticles at Kunsan (군산지역 부유분진의 계절적 농도변화와 화학적 조성에 대한 연구)

  • 오진만;김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.6
    • /
    • pp.475-485
    • /
    • 2001
  • The presence of airborne particles in the earth atmosphere expert important controls on the global climate because of their effects on the radiative balance. However, there are major uncertainties associated with the direct and indirect radiative effects of aerosols. In addition, their physicochemical properties cannot only the decline of air quality but also damage human health. Airborne particles were collected by two different commercial air samples, high volume sampler(for TSP) and low volume sampler(for P $M_{10}$ ) at the campus of Kunsan National University during February to September, 2000. In most cases, TSP and P $M_{10}$ were sampled once a week for the duration of 24 hours from 9:00 a.m. In addition samples were collected more intenisve, when the yellow dust was expected. Each sample was analyzed for pH and major ions concentration (C $l^{[-10]}$ , S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ , N $a^{+}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$) by ion chromatography and atomic absorption spectrophotometry. Acidity (pH) of TSP and P $M_{10}$ ranged from 5.09 to 8.51 and from 6.22 to 7.54, respectively. The concentrations of airborne particles were found to satisfy both the short and long-term air quality standards during the sampling period. If the ratio of ionic concentrations originating from None sea salt(Nss) to sea salt(ss) in aerosol samples was concerned, it was found that the ionic concentrations from marine environment contributed dominantly in total mass concentration in the airborne particles. When seasonal trends were examined, the TSP concentrations in spring were higher than those of other seasons. It may result form frequent occurrences of yellow dust and during the spring season. The concentration ratio of P $M_{10}$ to TSP ranged from 0.78 to 1 during the sampling period. pH in the airborne particle was highest during spring, but the other seasons maintained almost same level. These results suggest that alkaline species in yellow dust can directly neutralize aerosol acidity. During spring season, yellow dust could be a positive factor that can defer the acidification of surface soil and water by neutralizing acidic aerosols in the atmosphere.osphere.

  • PDF