• Title/Summary/Keyword: Ca-alginate bead

Search Result 52, Processing Time 0.03 seconds

Removal of Cadmium ion($Cd^{2+}$) by Pseudomonas aeruginosa Immobilized in Ca-Alginate Gel Beads (Ca-Alginate Gel Bead에 고정된 Pseudomonas aeruginosa에 의한 카드뮴이온($Cd^{2+}$)의 제거)

  • 최광수;김경태;양승남;김진욱;고창웅;김남기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.153-158
    • /
    • 1998
  • 산업발달과 더불어 우리의 일상 생활과 밀접한 관계를 갖게된 각종 중금속은 직접적으로는 직업병을 유발함음 물론 간접적으로는 식품류, 수질, 대기 및 토양 등을 오염시켜 만성적 혹은 급성적로 인체에 피해를 가져온다. 이와 관련해서 특히 문제시되는 중금속류로는 납, 카드뮴, 수은, 니켈, 크롬, 비소 등이 있다. 이중에서도 카드뮴에 의한 중독은 대표적인 예의 하나이다. (중략)

  • PDF

Citric Acid Production Using Immobilized Yeast Activated with $CaCl_2$ - containing Medium (고정화효모를 사용한 시트르산 생성에 있어서의 $CaCl_2$ 함유배지에 의한 활성화 효과)

  • 임동준;최차용
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.4
    • /
    • pp.285-291
    • /
    • 1986
  • Immobilized Candida lipolytica cells were prepared by entrapping the whole cells in calcium alginate gel. To enhance citric acid productivity, immobilized cells were Incubated with activation medium in fluidized-bed reactors. When the activation was done in batch operation, maximum citric acid productivity appeared in a much shorter time than in continuous operation. Activated immobilized cells were enhanced about 10-fold in citric acid production relative to non-activated immobilized cells. The productivity of citric acid was also influenced by bead size. When Immobilized cells were reacted in a fluidized-bed reactor with the same quantity of cells, the citric acid productivity was increased as the bead size was decreased.

  • PDF

Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine (설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

Removal of ammonia by packed bed bioreactor using immobilized nitrifiers (고정화 생물 반응기에 의한 암모니아 제거)

  • 김병진;이경범;서근학
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • Nitrifier consortium entrapped in Ca-alginate bead were packed into aerated packed bed bioreactor and non aerated packed bed bioreactor and the performances of two bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. Total ammonia nitrogen(TAN) removal rate was decrease in aerated packed bed bioreactor below 0.3hr of hydraulic residence time(HRT), but increased in non aerated packed bed bioreactor until 0.5hr of HRT. At HRT of 0.05hr, TAN removal rate of non aerated packed bed bioreactor was about 335g TAN/㎥/day and the optimum ratio of packing height and inside diameter of reactor (H/D) was 4. The performance of two bioreactors indicated that non aerated packed bed bioreactor was better than aerated packed bed bioreactor in ammonia removal from synthetic aquaculture water.

  • PDF

Preparation and Stability of Sodium Alginate Beads Containing ${\beta}-Carotene$ (베타카로틴 함유 알긴산 나트륨 비드의 제조 및 안정성)

  • Go, Kwang-Mook;Koo, Ja-Seong;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.323-327
    • /
    • 1999
  • To protect ${\beta}-carotene$ at the stomach and to release rapidly at the intestine we prepared alginate beads containing ${\beta}-carotene$. ${\beta}-carotene$ and alginate solution was homogenized and prepared o/w emulsion was prepared. It was poured into $Ca^{2+}$ solution through syringe needle. The gel was formed spontaneously and alginate beads containing ${\beta}-carotene$ were prepared. ${\beta}-Carotene$ was incorporated into the beads more than 95%. The release rate of ${\beta}-carotene$ was dependent on the concentration of $Ca^{2+}$, ${\beta}-carotene$ and surfactants. However, the concentration of alginate did not affect the release rate of ${\beta}-carotene$. The high concentration of $Ca^{2+}$ slowed down the release rate of ${\beta}-carotene$. The addition of surfactants in the ${\beta}-carotene$beads increased the release rate of ${\beta}-carotene$ in the order of Tween 80 > Cremophor > Span 20. The contents of ${\beta}-carotene$ and diameter of ${\beta}-carotene$ beads did not change significantly at $50^{\circ}C$ for 20 days.

  • PDF

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

Modeling the effect of mass transfer on the kinetics of fructo-oligosaccharide production by immobilized cells (고정화 세포에 의한 Fructo-oligosaccharides 생산 반응메카니즘에서 물질전달 영향에 대한 수학적 모델)

  • 윤종원;전영중이민규송승구
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.266-271
    • /
    • 1993
  • The effective diffusion coefficients of glucose, sucrose and fructo-oligosaccharides in Ca-alginate gel beads at high concentration of sucrose solutions were investigated at $50^{\circ}C$. A mathematical model for the kinetics of fructo-oligosaccharide production using immobilized cells was proposed and compared with experimental results varying the bead size, the substrate concentration and the bead ratio. Very low values of diffusion coefficients ranging $1.2-7.6\times10^{-7}\textrm{cm}^2$/sec were obtained, and the predicted results were in good agreement with experimental ones in all cases tested.

  • PDF

Particle Size Effects in Buffer System using Calcium Carbonate Bead Immobilized with Alginate for the Cultivation of Bifidobacterium (Alginate에 고정화된 Calcium Carbonate를 이용한 Buffer System에서 비드 크기에 따른 Bifidobacterium의 배양에 대한 효과)

  • Lee, Ki-Yong;Heo, Tae-Ryeon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.425-433
    • /
    • 1998
  • The characteristics of the reaction of calcium carbonate $(CaCO_3)$ immobilized with alginate as buffer system for the high concentration cultivation of bifidobacteria in fermenter are described by the mathematical model, and tested for the reusing possibility of the used $CaCO_3$ beads. When$CaCO_3$ beads with the various diameters were reacted in 0.1 M of the mixed organic acids (0.6 M of acetic acid and 0.4 M lactic acid) and in fermenter inoculated Bifidobacterium longum ATCC 15707, the change of bead diameters can be calculated with the amount of the decreased $CaCO_3$ from the surface of bead using the mathematical model. These values was similar to the directly measured bead diameter by a micrometer. Therefore, it was considered that the mathematical model could be used for explaining the reaction charateristics of the $CaCO_3$ bead reacted with the organic acids. When Bifidobacterium longum was incubated at $37^{\circ}C$ for 20 hours in fermenter with $CaCO_3$ beads, the buffering effect of $CaCO_3$, the reduce rate of the bead diameter, and the growth rate of Bifidobacterium longum were higher at the smaller beads than beads with the larger diameters. Also, when Bifidobacterium longum was incubated in fermenter with the mixed beads which were added new beads to the recovered beads in order to equalize with the total surface area of initial beads, the buffering effect of $CaCO_3$ bead and the growth rate of Bifidobacterium longum were very corresponded with the results of the fermentation using the only initial beads. Therfore, it is expected that the used beads can be reused by adding the initial beads.

  • PDF

Alginate Beads as Controlled Release Polymeric Drug Delivery System (Alginate Bead를 이용한 고분자 약물의 제어방출형 약물수송체)

  • Hwang, Sung-Joo;Rhee, Gye-Ju;Jo, Hang-Bum;Lee, Ki-Myung;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 1993
  • The purpose of this paper is to explore the possible applicability of alginate beads as an oral controlled release system of polymeric drugs. Cellulase was used as a model polymeric drug. The release of cellulase from alginate beads was moderately affected by the ratio of cellulase to sodium alginate and strongly affected by $CaCl_2$ concentration. However, the release was not particularly affected by the other factors such as sodium alginate concentration and curing time. The drug was not released from alginate beads at pH 1.2, but was released continuously up to 8 hr at pH 6.8. At pH 6.8, the beads were swollen highly up to 3 hr, thereafter, were eroded into the bulk solution up to 6 hr, completely. Drug release from the beads can be caused due to diffusion and erosion of the matrix. Activity of cellulase was reduced when alginate beads containing cellulase were stored in simulated gastric juice. Further investigation would be necessary to improve the acid resistance of the beads. Since the release of cellulase as a model polymeric drug could be controlled by the regulation of the preparation conditions of alginate beads, the alginate beads may be used for a potential oral controlled release system of such polymeric drugs as polypeptide drugs.

  • PDF