• Title/Summary/Keyword: Ca/S molar ratio

Search Result 33, Processing Time 0.025 seconds

Effects of Soil Acidification on Growth of Impatiens balsamina L. and Tagetes patula L. Plants (토양산성화가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 생장에 미치는 영향)

  • 김학윤
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.153-158
    • /
    • 2001
  • To investigate the effects of soil acidification on growth of Impatiens balsamina L. plants were transplanted to acidified soils with H$_2$SO$_4$ solution. The concentrations of soluble Ca, Mg, K, Al and Mn in the acidified soils increased with increment of H$^{+}$ addition to the soil. In both species, the plant height and root length were inhibited by soil acidification, showing much severer inhibition in Impatiens balsamina L. than in Tagetes patula L., As the soil pH decreases, the growth of underground parts decreased greatly than that of above ground parts in both species. Total dry weight decreased with increased Al concentration as well as lowered soil pH in both plants. There was a strong positive correlation between relative total dry weight and molar (Ca+Mg+K) / Al ratio of the soil. The results suggest that molar(Ca+Mg+K)/ Al ratio of the soil may be useful indicator for assessing the critical load of acid deposition in herb species.s.

  • PDF

A Study of Desulfation Characteristics of Circulating Fluidized Bed Combustion for Domestic Anthracite (국내 무연탄의 순환류동층 보일러에서 탈황 특성 연구)

  • 정진도;김장우;하준호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.429-436
    • /
    • 2004
  • Circulating fluidized bed combustion (hereafter CFBC) technology enables an efficient combustion for the materials with low heating values such as high ash coal and sludges. It also has desulfation function by adding limestone directly to combustor. The CFBC has been considered as one of the best processes for low grade coal containing with large contents of ash and sulfur. In this paper, in order to various tests were performed to find the optimum desulfation condition for CFBC using Korean Anthracite. We surveyed possible parameters and conducted desulfation efficiency test in D Thermal Power Plant. In addition, the result of some fundamental theoretical consideration was discussed with CFBC. Optimum limestone size could be considered to be 0.1-0.3mm irrespective of combustion temperature and Ca/S molar ratio variation. Desulfation efficiency increased as the molar ratio increased. Because desulfation process occurs at the surface at higher temperature, inner side of limestone can't be utilized. When surface area is not appropriate, some SO$_2$ emit without reaction. Optimum molar ratio should be decided after considering chemical and physical properties of limestone and coal thoroughly such as particle size, pore size and HGI. Commercial CFBC is operated at Ca/S 1.6. Combustor temperature 840-87$0^{\circ}C$ shows good desulfation efficiency.

Foaming Characteristics of Autoclaved Aerated Concrete with Different C/S Molar Ratios and Aluminum Powder Contents (C/S 몰비 및 알루미늄 분말 첨가율 변화에 따른 고온·고압 기포 콘크리트의 발포특성)

  • Yoon, Hyun-Sub;Pakr, Jong-Beom;Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.220-221
    • /
    • 2018
  • Test results showed that foaming ratio of autoclaved aerated concrete significantly affected by the CaO/Si2O (C/S) molar ratio of the component materials, indicating the greatest foaming ratio of 202% when the C/S ratio was 0.9.

  • PDF

Effects of Ca/Si Molar Ratio on the Interatomic Distance of Synthetic Calcium Silicate Hydrate (C-S-H) at Elevated Temperature (고온 가열시 Ca/Si 몰비율에 따른 합성 칼슘 실리케이트 수화물(C-S-H)의 구성 원자간 거리 변화)

  • Im, Su-Min;Bae, Sung Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.144-145
    • /
    • 2021
  • Calcium silicate hydrate(C-S-H) is the principal binding phase that controls the strength and thermal stability of concrete. However, the effects of high temperature on the lattice structure and interatomic structure of C-S-H remains poorly understood due to its nanocrystallinity. This study aims to elucidate the change in interatomic distance of synthetic C-S-H with different Ca/Si molar ratios after exposure to high temperature via high energy X-ray scattering experiment which is a powerful analytical tool for amorphous materials.

  • PDF

Relationship Between Chemical Properties of Forest soil Solutions and Element concentrations in Needles of Pinus thunbergii in Industral Complexes (공단 인접지역 해송 잎의 무기성분 함량과 산림 토양용액의 화학적 특성간의 관계)

  • Lee, Wi-Young;Yang, Jae E.;Park, Chang-Jin;Zhang, Yong-Seon;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.322-328
    • /
    • 2004
  • Available nutrients in soil solution play key roles on the growth of plants, but the equilibria in soil solution can be disturbed by acid precipitation. In this study, we investigated the relationships between element concentrations in the needles of Pinus thunbergii and chemical properties of forest soil solutions in the industrial complexes as an effort to find the possible limiting factor(s) causing the forest decline. The Ca/Al molar ratios in needles of Pinus thunbergii collected from the control sites were 18. However, at Onsan and Ulsan industrial complexes, those were decreased to the ranges from 10 to 11 for the one-year old needles and from 9 to 10 for the two-year old needles. The Mg/Al molar ratios showed similar tendencies with the Ca/Al molar ratios of the needles of Pinus thunbergii. In the A horizon, there existed a significant correlation between Mg concentrations in the needles of Pinus thunbergii and Ca/Al molar ratio of forest soil solution. Calcium concentrations in the needles of Pinus thunbergii in the B horizon were also significantly correlated with Ca/Al molar ratios of forest soil solutions. The uptakes of Ca and Mg by Pinus thunbergii were mainly limited by Al in the soil solutions of the A horizon and by Mn and Al in the soil solutions of the B horizon.

DEVELOPMENT OF SUSTAINABLE CEMENTLESS MORTARS

  • Keun-Hyeok Yang;Seol Lee;Sang-Ho Nam
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1630-1636
    • /
    • 2009
  • Nine alkali-activated (AA) mortars were mixed and cured at water or air-dried conditions to explore the significance and limitation for the application of the combination of Ba and Ca ions as an alkali-activator. Ground granulated blast-furnace slag (GGBS) was used for source materials, and calcium hydroxide (Ca(OH)2) and barium hydroxide (Ba(OH)2) were employed as alkali activators. Test results clearly showed that the water curing condition was more effective than the air-dried curing condition for the formation of the denser calcium silicate hydrate (C-S-H) gels that had a higher molar Si/Ca ratio, resulting in a higher strength development. At the same time, the introduction of Ba(OH)2 led to the formation of 2CaO·Al2O3·SiO2·8H2O (C2ASH8) hydrates with higher molar Si/Al and Ca/Al ratios. Based on the test results, it can be concluded that the developed cementless mortars have highly effective performance and high potential as an eco-friendly sustainable building material.

  • PDF

Porous silica ceramics prepared by sol-gel process-Effect of $H_2O/TEOS$ molar ratio- (솔-젤법에 의한 다공성 실리카 세라믹스의 제조-$H_2O/TEOS$ 몰비의 영향-)

  • Lee, Jin-Hui;Kim, Wha-Jung;Lee, Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.216-224
    • /
    • 1997
  • Porous silica ceramics were prepared(with HCI catalyst) using H2O/TEOS molar ratios of 2.6~59.0, with the EtOH/TEOS ratio fixed. After preparing 9 kinds of sol, the followings were investigated; measurement of the gelation time, thermal analyses by TG/DTA, property analyses of the intermediates by FT-IR and X-ray diffractometry with dried samples, analyses of SiO2 polymer by FT-IR, the investigation of specific sur-face area and pore size distribution by N2-adsorption isotherm, and structural change of SiO2 polymer and pore morphology by TEM observation, with samples heat-treated to 50$0^{\circ}C$. In the concentrations of in-vestigated compositions and catalyst, gelation time showed a minimum at ca. 11 moles of water per one mole of TEOS, the highest degree of polymerization at ca. 8-18 moles, and the largest specific surface area at ca. 11 moles, which means that the polymerization proceeded fastest at ca. 11 moles of water. In con-clusion, the more water used, the faster the polymerization reaction up to ca. 11 moles, but more than ca. 11 moles of water caused retardation of gelation and resultant reduction of specific surface area.

  • PDF

Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios

  • Song, Jun Young;Sim, Youngjong;Yeom, Sun;Jang, Jaewon;Yun, Tae Sup
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • The enzyme-induced carbonate precipitation (EICP) method has been investigated to improve the hydro-mechanical properties of natural soil deposits. This study was conducted to explore the stiffness evolution during various stress scenarios. First, the optimal concentration of urea, CaCl2, and urease for the maximum efficiency of calcite precipitation was identified. The results show that the optimal recipe is 0.5 g/L and 0.9 g/L of urease for 0.5 M CaCl2 and 1 M CaCl2 solutions with a urea-CaCl2 molar ratio of 1.5. The shear stiffness of EICP-treated sands remains constant up to debonding stresses, and further loading induces the reduction of S-wave velocity. It was also found that the debonding stress at which stiffness loss occurs depends on the void ratio, not on cementation solution. Repeated loading-unloading deteriorates the bonding quality, thereby reducing the debonding stress. Scanning electron microscopy and X-ray images reveal that higher concentrations of CaCl2 solution facilitate heterogeneous nucleation to form larger CaCO3 nodules and 11-12 % of CaCO3 forms at the interparticle contact as the main contributor to the evolution of shear stiffness.

Assessment of Flavin-containing Monooxygenase (FMO) Activity by Determining Urinary Ratio of Theobromine and Caffeine in a Korean Population after Drinking a Cup of Coffee

  • Chung, Woon-Gye;Kang, Ju-Hee;Roh, Hyung-Keun;Lee, Kyung-Hoon;Park, Chang-Shin;Cha, Young-Nam
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • To examine individual variation in drug metabolism catalyzed by flavin-containing monooxygenase (FMO), 179 Korean volunteers' urinary molar concentration ratio of theobromine (TB) and caffeine (CA) was determined. Their urine was collected for 1 hr (between 4 and 5 hrs) after they drank a cup of coffee containing 115 mg CA and analyzed by an HPLC system. The lowest TB/CA ratio obtained was 0.40, the highest ratio was 15.17 (38-fold difference), and the median ratio for all subjects was 1.87. The mean was 2.66 with 2.36 S.D.. In 134 nonsmokers, the mean ratio was $2.35{\pm}1.93,$ that of 51 males was $2.30{\pm}2.26$ and 83 females was $2.37{\pm}1.85,$ respectively. There was no significant gender difference in the obtained TB/CA ratio (Mann-Whitney test; p=0.518). There were no smokers among the 83 female volunteers. In the remaining 96 male subjects, the ratio obtained in 51 nonsmokers was $2.30{\pm}2.06$ and that of 45 smokers was $3.62{\pm}3.19.$ This indicated that the TB/CA ratio was increased significantly in smokers (p=0.007). However, when the TB/CA ratios (FMO activity) obtained in all 179 Korean volunteers are compared with the urinary concentration ratios of paraxanthine (PX) plus 1,7-dimethylurate (17U) to CA (CYP1A2 activity), there was a weak but significant correlation (Pearson's correlation coefficient test; $r^2=0.28,$ p<0.0001). This indicates that, although the urinary TB/CA ratio mostly represents FMO activity, minor contribution by CYP1A2 activity cannot be ignored. In conclusion, the FMO activity measured by taking the urinary TB/CA ratio from normal healthy Korean volunteers shows marked individual variations without significant gender differences and the increased TB/CA ratio observed in cigarette smokers may have been caused by the increased CYP1A2 activity.

  • PDF

Optimum Condition for Fluoride Removal Prior to the Application of Struvite Crystallization in Treating Semiconductor Wastewater (Struvite 결정화를 이용한 반도체 폐수처리 시 불소제거를 위한 최적 조건)

  • An, Myeong Ki;Woo, Gwi Nam;Kim, Jin Hyung;Kang, Min Koo;Ryu, Hong Duck;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.916-921
    • /
    • 2009
  • This study was aimed to both enhance the fluoride removal and to reduce the phosphorus removal in treating semiconductor wastewater using $Ca(OH)_2$ at low pH so as to facilitate struvite crystallization reaction. The struvite crystallization could be introduced after fluoride removal by retaining the phosphorus source. As the results, the method applied in this study achieved high fluoride removal efficiency (about 91%) with retardation of phosphorus removal at pH 4, compared to conventional methods where the removal of fluoride and phosphorus were done at pH 11. Therefore, the fluoride removal at low pH would contribute to the enhancement of nitrogen and phosphorus removals in a consecutive struvite crystallization reactor. Treatment of semiconductor wastewater at low pH using $Ca(OH)_2$ also had lower (about 20%) water content of precipitated sludge compared to conventional method. As the molar ratio of Ca to F increased the removal efficiencies of fluoride and phosphorus increased. Although the amount of seed dosage didn't affect the removal of fluoride and phosphorus, its increase reduced the water content of precipitated matter. Finally, considering consecutive struvite reaction, the optimum condition for the removal of fluoride and phosphorus was as follow: pH: 4, the molar ratio of Ca:F: 1:1.